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ABSTRACT13

This paper deals with the tracking control problem of a class of fractional-order14

uncertain systems with time delays. In order to handle the effects brought by the15

uncertainties, external disturbances, time-delay terms and to overcome the obstacles16

caused by inputs saturation, the tracking controller, which consist of linear control17

law, nonlinear law and robust control law proposed in this paper, is designed by18

combining the composite nonlinear feedback control method and the properties of19

fractional order operator. Furthermore, the validation of this tracking controller is20

proved.21
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1. Introduction25

There exist many literatures on fractional calculus and related topics [1, 2, 3, 4, 5, 6,26

7, 8], such as Podlubny [2] talked about several classical definitions of fractional order27

operators; Miller [5] introduced the general theory of fractional differential equations; a28

new fractional derivatives with nonlocal and non-singular kernel due to Atangana and29

Baleanu [8], to name but a few. In recent years, relying on the fact that many complex30

phenomenon can be simplified and accurately described by fractional-order operators,31

fractional-order systems have attracted great attention in applied sciences [9, 10, 11]..32

The control problem is one of the important issues in theory and applications of frac-33

tional order systems. Recently, varieties of fractional-order control methods have been34

designed, such as sliding mode control [12, 13], adaptive control[14], feedback control35

[15] and so on. It is mentioned that the sliding mode control method can effectively36
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ensure the stability and robustness of nonlinear fractional order system, alternatively,37

it can switch the motion to the sliding mode surface through the switching control law,38

so as to ensure rapid response and robustness. In addition, the combinations of several39

controllers are effective ways to achieve better control effects by taking the advantages40

of different control methods [16, 17, 18, 19, 20, 21]. However, to our best knowledge,41

there are hardly exists result on the tracking control of fractional-order systems based42

on the composite nonlinear feedback (CNF) control method, particularly for systems43

with time delays and actuator saturation constraints. On the other hand, due to the44

presence of uncertainties and external disturbances in the system, it is necessary to45

identify unknown nonlinear terms which should be compensated in the process of de-46

signing the controller. Furthermore, the time delays bring some obstacles in designing47

the controller and proving the stability.48

The systems with time delays are basic mathematical models to describe the prac-49

tical problems, for example, chemical reaction, mechanical vibration, power system,50

and so on, for more detailed, one can refer to Ref [22]. When the control problem-51

s for systems with time delays are considered. The time delays lead to the complex52

of designing control and the proof for the system controlled, for more detailed, see53

[23, 24, 25, 26]. In addition, the phenomenon of actuator saturation usually happens54

in systems controlled. Usually, the input saturations restrict the system’s performance,55

which result in the inaccuracies and instabilities of the system considered. To deal with56

control problems for the time-delay system with actuator saturation, many control57

methods have been developed [27, 28, 29]. In Ref[30], a class of linear systems with58

input saturation constraints and time delay is studied, and Lyapunov-Razumihkin and59

Lyapunov-Krasovskii functional approach are used to analyze the domain of attraction60

problem and stability problem of the system. In [31], a state feedback controller design61

method was proposed for a class of uncertain discrete time-delay systems with control62

input saturation and bounded external disturbances, which guarantee the trajectories63

of system converge to the desired state.64

In the above control methods, most of the control inputs depend on the sign func-65

tion, which results in that the control law is not smooth. In order to improve the66

transient performance of the tracking ability of the closed-loop system, the composite67

nonlinear feedback control method was established in [32], and developed by Mobayen68

and Tchier [33], Chen et al [34], Lin et al [35], He et al [36] and so on. CNF control69

method is often used to deal with tracking control problems of systems with input70

saturation, and it can improve the transient performance of the closed-loop system,71

while maintain a small overshoot or even no overshoot. Jafari et al [37] designed a72

CNF controller based on disturbance observer, which can effectively guarantee the73

tracking performance of the system. Based on CNF control method, a discrete in-74

tegral sliding mode controller which can produce the superior transient performance75

was proposed by Mondal S. et al [38]. In Ref [39], employing CNF control method,76

Jafari et al considered the control problem for the system with a singular time delay.77

In term of CNF control method, a novel controller for nonlinear time-delay systems78

with saturation constraints was given by Ghaffari et al [40]. For more detailed, one79

can refer to [41, 42, 43] and the references therein. It must be mentioned that most80

investigations which considered control problem for differential systems by CNF con-81

trol method were focused on the integer order differential systems with time delay, it82

is necessary to develop composite nonlinear feedback control to deal with the control83

problem for fractional-order systems.84

Relying on CNF control methods, this paper considers the control problems for85

fractional-order uncertain systems with time delay and external disturbances, the rest86
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of paper is organized as follows. In Section 2, we describe the fractional-order system87

investigated in this paper. Section 3 is devoted to give main results and the associated88

proofs.89

2. Preliminaries and system formulation90

The following are the definitions of Caputo-fractional order derivative adopted in this91

paper.92

Definition 2.1. [2] For a continuous function x(t) : [0,∞) → R, the Caputo-type
fractional order derivative with the order α of the function x(t) is defined as

C

0D
α

t x(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αx′(s)ds, 0 < α < 1.

Definition 2.2. [2] The Caputo-type fractional integral with the order α of function
x(t) is defined as

0I
α
t x(t) =

1

Γ(α)

∫ t

0
(t− s)α−1x(s)ds, 0 < α < 1.

Some properties of fractional calculus operators are introduced as follows.93

Proposition 2.3. [16] Let x ∈ Ck[a, b] for some a < b and some k ∈ N . Moreover,
let n, ε > 0 such that there exists some ` ∈ N with ` ≤ k and n, n+ε ∈ [`−1, `]. Then,

C

0D
ε

t (
C

0D
n

t x(t)) =
C

0D
ε+n

t x(t).

Proposition 2.4. [2] If the Caputo fractional differential
C

0D
α

t x(t) is integrable, then

0I
α

t (
C

0D
α

t x(t)) = x(t)− x(0),

if the function x(t) ∈ C1[0, t], and 0 < α < 1.94

Consider the following multi-input and multi-output fractional-order uncertain sys-95

tem with actuator saturation96 
C

0D
α

t x(t) = (A+ ∆A(ν(t)))x(t) + Ā(ς(t))x(t− τ(t)) + (B
+ ∆B(σ(t)))sat(u(t)) +D(θ(t)),

y(t) = Cx(t), 0 < t < +∞,
(1)

where x(t) ∈ Rn, y(t) ∈ Rm, m < n and u(t) ∈ Rn are the system state vector, the97

system output vector and the control input vector respectively. The matrix A denotes98

the system matrix, B is the input matrix and C represents the output matrix, they99

are both the constant matrices with the appropriate dimensions. τ(t) ∈ R+ is the time100

delay. The terms ∆A(·) and ∆B(·) represent the uncertainties of the system, and D(·)101

denotes the perturbation, the uncertain terms ν(·) : R+ → D, σ(·) : R+ → D and102

θ(·) : R+ → D are Lebesgue measurable functions, where D is a compact bounded set.103

The control input vector is constrained by a saturation function sat : Rn → Rn104
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with the following form105

sat(u(t)) =


sat(u1(t))
sat(u2(t))

...
sat(un(t))

 , (2)

where the operator106

sat(ui(t)) = sign(ui(t))min(|ui|, ūi), i = 1, 2, · · · , n, (3)

and ūi represents the saturation level of the i-th control channel.107

The objective in this paper is to derive the composite controller u(t), which leads108

to the output vector y(t) of the system (1) can track the output vector yr(t) of the109

reference system rapidly and smoothly. The reference system is defined as following110 {
C

0D
α

t xr(t) = Arxr(t),
yr(t) = Crxr(t),

(4)

where Ar ∈ Rn×n and Cr ∈ Rn×n are both constant matrices. xr(t) ∈ Rn denotes the111

reference state vector and yr(t) ∈ Rm is the reference output vector. For the purposes112

of the tracking control, it is required that there exists a constant d > 0 such that113

||xr(t)|| 6 d for all t > 0.114

It is turned to list some hypothesises about the system (1) and system (4).115

Hypothesis 1. There exist two constant matrices G and H which satisfy116 [
A B
C 0

] [
G
H

]
=

[
GAr
Cr

]
. (5)

Moreover, for any positive-definite matrix Q ∈ Rn×n, there exists an unique positive-117

definite matrix P ∈ Rn×n satisfying the following Riccati algebraic equation [44]118

ATP + PA− ηPBBTP = −Q. (6)

Hypothesis 2. The fractional derivative of the unknown time delay τ(t) is bounded,119

which means there is a positive constant ϑ such that |C0D
α

t τ | 6 ϑ. Furthermore, suppose120

ϑ < 1.121

Hypothesis 3. The matrices ∆A(ν(t)), ∆B(σ(t)) and D(θ(t)) are matched, and there122

exist continuous and bounded functions N1(·), N2(·) and N3(·) with the boundary123

ρ1 = max
ν∈D
‖N1(ν)‖,

ρ2 = max
σ∈D
‖N2(σ)‖,

ρ3 = max
θ∈D
‖N3(θ)‖,

(7)

such that124

∆A(ν(t)) = BN1(ν),
∆B(σ(t)) = BN2(σ),
D(θ(t)) = BN3(θ).

(8)
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Moreover, assume the time-delay matrix Ā is matched and125

Ā(ς) = BN̄. (9)

Hypothesis 4. The pair {A,B} from the system (1) is completely controllable.126

The next lemma is very important in deriving the main results of this paper.127

Lemma 2.5. [45](Schur Complement) The following LMI condition128 [
F11(t) F12(t)
F21(t) F22(t)

]
< 0 (10)

holds if and only if {
F22(t) < 0,
F11(t)− F12(t)F

−1
22 (t)F T21(t) < 0,

or is equivalent to {
F11(t) < 0,
F22(t)− F21(t)F

−1
11 (t)F T12(t) < 0,

where F11(t) = F T11(t), F12(t) = F T21(t) and F22(t) = F T22(t).129

3. Main results130

This section is devoted to obtain the main results and the proof associated. Firstly,131

we transform the system (1) to the error system.132

3.1. Model transformation and associated stability results133

Consider the following tracking error vector e(t) and the auxiliary state vector defined134

by135

e(t) = y(t)− yr(t), (11)

and136

x̃(t) = x(t)−Gxr(t), (12)

where the matrix G satisfies the Hypothesis 1. Thus, combining the system (1) with137

the reference system (4) gives138

e(t) = C(x(t)−Gxr(t)) = Cx̃(t), (13)

then139

‖e(t)‖ = ‖Cx̃(t)‖ 6 ‖C‖‖x̃(t)‖, (14)
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which implies that

lim
t→+∞

‖e(t)‖ 6 lim
t→+∞

‖x̃(t)‖.

Thus, we obtain lim
t→+∞

‖e(t)‖ = 0 when lim
t→+∞

‖x̃(t)‖ = 0, which means that ‖x̃(t)‖ → 0140

with t→∞ can guarantee the output y(t) can be forced to track the reference output141

yr(t) asymptotically.142

The following Lemmas and Definitions are very important to obtain the main results143

in this paper.144

Lemma 3.1. [46] Suppose x(t) is continuously differentiable function, then, for any
time variable t > 0, the following inequality holds

1

2

C

0D
α

t x
2(t) 6 x(t)(

C

0D
α

t x(t)), 0 < α < 1.

Lemma 3.2. [47] Let x(t) be a vector and xT (t)Px(t) is continuously differentiable
function for any symmetric matrix P , then, for each time t > 0, the following can be
obtained.

1

2

C

0D
α

t (xT (t)Px(t)) 6 xT (t)P (
C

0D
α

t x(t)),∀α ∈ (0, 1] , ∀t > 0,

Definition 3.3. [48] If the continuous function α(·) : [0, t) → [0,∞) is strictly in-145

creasing and α(0) = 0, then, it belongs to K−class function.146

Lemma 3.4 (Fractional Order Mittag-Leffer asymptotical stability). [49] Let x = 0 be
an equilibrium point of the fractional system (1). Assume that there exist a Lyapunov
function V (x(t)) and K−class functions αi(·)(i = 1, 2, 3) satisfying

α1(‖x(t)‖) 6 V (x(t)) 6 α2(‖x(t)‖),

C

0D
α

t V (x(t)) 6 −α3(‖x(t)‖),

where 0 < α 6 1. Then, the equilibrium point of system (1) is asymptotically stable.147

Lemma 3.5 (Integer-order Barbalat’s Lemma). [50] If η : R → R is a uniformly148

continuous function for t > 0 and lim
t→∞

∫ t
0 η(ω)dω, 0 < q < 1 exists and is finite, then149

lim
t→∞

η(t) = 0.150

3.2. The design of composite nonlinear tracking control151

The objective in this part is to design a tracking control law based on the CNF control152

approach without large overshoot and unfavorable actuator saturation effect.153

The process of the controller design can be divided into the following four steps.154

Step 1: The design of a linear state feedback controller.155

Step 2: The design of a nonlinear feedback controller,156

Step 3: The design of a robust tracking controller.157
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Step 4: The design for the CNF controller needed.158

The exact process is as following.
Step 1: The linear feedback controller is designed as

uL(t) = Fx(t) + (H − FG)xr(t) (15)

= Fx̃(t) +Hxr(t),

where F represents a gain matrix which is determined later. The linear part can159

ensure the closed-loop system possesses the properties of fast response and enough160

small damping ratio.161

Step 2:) The nonlinear feedback controller is expressed as162

uN (t) = µ(t)BTPx̃(t), (16)

where P is a positive definite matrix, and163

µ(t) = − κ2(t)

κ(t)‖BTPx̃(t)‖+ %(t)
, (17)

where κ(t) > 0 is a function which is needed to be designed and the bounded function164

%(t) is an any non-negative and uniform continuous function. Moreover, %(·) satisfies165

sup
t∈[0,+∞)

∫ t

0
[%(x̃, s)]ds 6 %̄, (18)

where %̄ > 0, then one can have166

lim
t→+∞

∫ t

0
[%(x̃, s)]ds 6 %̄ < +∞. (19)

Obviously, µ(t) formulated by (17) is non-positive and satisfies the local Lipschitz167

condition.168

Remark 1. The value of %(t) which is depended on the error signal e(t) would increase169

with the output signal y(t) far away from the reference signal yr(t), meanwhile, the170

value of |µ(t)| would decrease, which can leads to that the effect of the nonlinear part171

can be eliminated, and vice versa.172

Step 3: ) Consider a fractional-order sliding mode surface as following173

s(t) = k1x̃(t) + k2(
C

0D
α

t x̃(t)) + · · ·+ kn(
C

0D
(n−1)α

t x̃(t))

=
∑n

i=1 ki(
C

0D
(i−1)α

t x̃(t)), (20)
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where ki(i = 1, 2, · · · , n) is a constant row vector. Taking the fractional-order deriva-
tive with respect to t in both sides of (20) implies

C

0D
α

t s(t) = k1(
C

0D
α

t x̃(t)) + k2(
C

0D
2α

t x̃(t)) + · · ·+ kn(
C

0D
nα

t x̃(t)) (21)

=

n∑
i=1

ki(
C

0D
iα

t x̃(t)).

On the other hand, when the states of the system arrive the sliding mode surface s(t),174

then s(t) = 0, thus, the robust control law can be constructed as175

us(t) = −
(
k1B)−1[

n∑
i=2

ki(
C

0D
iα

t x̃(t)) + k1(A+BF +µ(t)BBTP )x̃(t) + ls(t) + ksgn(s)
]
,

(22)
where k1B is non-vanishing, and l and k are two positive constants. This robust176

controller can guarantee the process of tracking for the output signal to the reference177

signal can not be affected by external disturbances and uncertainties, and the tracking178

ability of the system can be further improved.179

Step 4: The CNF controller is comprised of the linear, nonlinear and robust control180

laws, which are derived in Step 1, Step 2 and Step 3 respectively, with the following181

form182

u(t) = Fx̃(t) +Hxr(t) + µ(t)BTPx̃(t) + us(t), (23)

where183

µ(t) = − (ρ1(‖x̃(t)‖+ ‖Gxr(t)‖) + ρ3 + ρ2ū+ 2ū+ ρ̃(ū))2

(ρ1(‖x̃(t)‖+ ‖Gxr(t)‖) + ρ3 + ρ2ū+ 2ū+ ρ̃(ū))‖BTPx̃(t)‖+ %(x̃(t))
, (24)

here ρ̃(ū) is a positive constant and satisfies ‖u(t)‖ ≤ ρ̃(ū).184

Remark 2. Because x̃(t), xr(t) and s(t) are all bounded, the input of controller185

formulated by (23) is also bounded.186

Set187

ω(t) = sat(u(t))− Fx̃(t)−Hxr(t), (25)

which together with (23) implies

ω(t) = sat(Fx̃(t) +Hxr(t) + µ(t)BTPx̃(t) + us(t))− Fx̃(t)−Hxr(t). (26)

Taking the fractional-order derivative with respect to t in both sides of (12) along the188

trajectories of (1) and (4), we can get189

C

0D
α

t x̃(t) =
C

0D
α

t x(t)−G(
C

0D
α

t xr(t))

= (A+ ∆A)x(t) + Āx(t− τ) + (B + ∆B)sat(u) +D −GArxr(t)
= (A+ ∆A)x̃(t) + (A+ ∆A)Gxr(t) + Āx̃(t− τ) + ĀGxr(t− τ)

+ (B + ∆B)sat(u) +D −GArxr(t). (27)
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Substituting ω(t) into (27) yields that

C

0D
α

t x̃(t) = (A+ ∆A+BF )x̃(t) +BHxr(t) +Bω(t) + (A+ ∆A)Gxr(t)

+ Āx̃(t− τ) + ĀGxr(t− τ) +D −GArxr(t) + ∆Bsat(u)

= (A+ ∆A+BF )x̃(t) +Bω(t) + Āx̃(t− τ) + ĀGxr(t− τ)

+D + ∆AGxr(t) + ∆Bsat(u). (28)

Remark 3. The matrix A is a negative definite matrix if and only if the even order190

principal sub-formula Di > 0, and the order principal sub-formula of odd order Di < 0.191

Then, the quadratic f(x1, x2, · · · , xn) = XTAX is a negative quadratic.192

The main results of this paper is represented by the coming Theorem 3.6.193

Theorem 3.6. Consider the fractional-order uncertain system (1) and the reference194

system (4). Suppose the Hypothesises 1, 2 and 3 hold, and for any δi ∈ (0, 1)(i = 1, 2),195

let cδ is the largest positive scalar such that x̃ ∈ Xδ with Xδ = {x̃ : x̃TPx̃ 6 cδ}, the196

following inequalities hold,197

‖Fx̃(t)‖ 6 (1− δ1 − δ2)ū, (29)

198

‖Hxr(t)‖ 6 δ1ū, (30)

199

‖us(t)‖ 6 δ2ū. (31)

If there exist a matric Z > 0 with adequate dimensions, and satisfy the following200

condition:201

Λ =

[
Λ11 PĀ
∗ −(1− ϑ)Z

]
< 0, (32)

where Λ11 = (A+BF )TP+P (A+BF )+(1−ϑ)−1P 2+Z+Q+F TWF , and Q+F TWF202

is a positive definite matrix. Then, under the controller formulated by (23), the error203

e(t) defined by (11) converges to zero asymptotically with t→ +∞.204

Proof. The whole proof is divided into four situations.205

S1: The input signal is unsaturated which means the values of inputs are less than206

the supremum of saturation function and more than the infimum of saturation207

function208

S2: The values of all input channels of control are more than the supremum of satu-209

ration function.210

S3: The values of input channels of control are less than he infimum of saturation211

function.212

S4: Some of the inputs channels are unsaturated, and the others are saturated213

Proof for S1: In this case, we have214

|ui(t)| 6 ūi, i = 1, 2, · · · , n, (33)
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then sat(u) = u(t), therefore, it can be obtained that

ω(t) = sat(Fx̃(t) +Hxr(t) + µ(t)BTPx̃(t) + us(t))− Fx̃(t)−Hxr(t) (34)

= µ(t)BTPx̃(t) + us(t).

Given the following Lyapunov function215

V1(x̃(t)) =
1

2
s2(t). (35)

Taking the fractional-order derivative with respect to t in both sides of (35) along the216

trajectories of the sliding mode surface (20), which together with Lemma 3.1 yields217

C

0D
α

t V1(t) 6 s(t)(
C

0D
α

t s(t))

= s(t)
[
k1(

C

0D
α

t x̃(t)) +

n∑
i=2

ki(
C

0D
iα

t x̃(t))
]
. (36)

Substituting (28) into (36) gives

C

0D
α

t V1(t) 6 s(t)
[
k1(A+ ∆A+BF )x̃(t) + k1Bω(t) + k1Āx̃(t− τ) + k1D

+ k1ĀGxr(t− τ) + k1∆AGxr(t) + k1∆Bsat(u) +

n∑
i=2

ki(
C

0D
α

t x̃(t))
]

= s(t)
[
k1(A+ ∆A+BF + ∆BF )x̃(t) + k1Āx̃(t− τ) + k1Bω(t)

+ k1µ(t)∆BBTPx̃(t) + k1χ(t) +

n∑
i=2

ki(
C

0D
α

t x̃(t))
]
,

where218

χ(t) = ĀGxr(t− τ) +D + ∆AGxr(t) + ∆BHxr(t) + ∆Bus(t)

= Bξ(t), (37)

along with Hypothesis 3, we have219

χ(t) = Bξ(t), (38)

here220

ξ(t) = N̄Gxr(t− τ) +N3 +N1Gxr(t) +N2Hxr(t) +N2us(t). (39)

With robust control law (22) and Hypothesis 3, from (34), we can get

C

0D
α

t V1(t) 6 s(t)
[
k1(∆A+ ∆BF )x̃(t) + k1Āx̃(t− τ) + k1µ(t)∆BBTPx̃(t)

+ k1χ(t)
]
− ls2(t)− k|s(t)|

= s(t)
[
k1B(N1 +N2F )x̃(t) + k1BN̄x̃(t− τ) + k1N2µ(t)BBTPx̃(t)

+ k1Bξ(t)
]
− ls2(t)− k|s(t)|,
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then

C

0D
α

t V1(t) 6 |s(t)|‖k1B‖[(ρ1 + ρ2‖F‖)‖x̃(t)‖+ ‖N̄‖‖x̃(t− τ)‖
+ ρ2|µ(t)|‖BTP‖‖x̃(t)‖+ ρξ]− ls2(t)− k|s(t)|,

where ρξ = max‖ξ(t)‖.
Thus, when the system parameters satisfy the following switching condition

k > ‖k1B‖[(ρ1 + ρ2‖F‖)‖x̃(t)‖+ ‖N̄‖‖x̃(t− τ)‖+ ρ2|µ(t)|‖BTP‖‖x̃(t)‖+ ρξ],

it can be asserted that

C

0D
α

t V1(t) 6 −ls2(t).

Therefore, using Lemma 3.4, we can derive the equilibrium point of the system (1) is
asymptotically stable and the trajectories converge to the sliding surface.

Conducting the following discussion requires an alternative approach, thus, we need
another Lyapunov functional candidate as follows

V2(x̃(t), xr(t)) = 0I
1−α

t [x̃T (t)Px̃(t)] +

∫ t

t−τ
x̃T (β)Zx̃(β)dβ (40)

+ 0I
1−α

t [xTr (t)Prxr(t)] +

∫ t

t−τ
xTr (β)GT ĀT ĀGxr(β)dβ,

where the matrix Z and Pr are positive definite which can be determined later.
Taking derivative in both sides of (40), along with Hypothesis 2, we can find

V̇2(t) 6 [
C

0D
α

t x̃(t)]TPx̃(t) + x̃T (t)P (
C

0D
α

t x̃(t)) + x̃T (t)Zx̃(t) + [
C

0D
α

t xr(t)]
TPrxr(t)

− (1− ϑ)x̃T (t− τ)Zx̃(t− τ) + xTr (t)Pr(
C

0D
α

t xr(t)) + xTr (t)GT ĀT ĀGxr(t)

− (1− ϑ)xTr (t− τ)GT ĀT ĀGxr(t− τ).

According to (4) and (28), we have221

V̇2(t) 6 x̃T (t)[(A+ ∆A+BF )TP + P (A+ ∆A+BF ) + Z]x̃(t)

+x̃T (t− τ)ĀTPx̃(t) + x̃T (t)PĀx̃(t− τ) + xTr (t− τ)GT ĀTPx̃(t)

+x̃T (t)PĀGxr(t− τ) + xTr (t)GT∆ATPx̃(t) + x̃T (t)P∆AGxr(t)

+ωT (t)BTPx̃(t) + x̃T (t)PBω(t) +DTPx̃(t) + [sat(u)]T∆BTPx̃(t)

+x̃T (t)P∆Bsat(u) + x̃T (t)PD − (1− ϑ)x̃T (t− τ)Zx̃(t− τ)

+xTr (t)PrArxr(t)− (1− ϑ)xTr (t− τ)GT ĀT ĀGxr(t− τ)

+[Arxr(t)]
TPrxr(t) + xTr (t)GT ĀT ĀGxr(t), (41)

together with the Hypothesis 3, we get222

h(t) = D + ∆AGxr(t) + ∆Bsat(u)

= Bγ(t), (42)
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where

γ(t) = N1Gxr(t) +N2sat(u) +N3.

Since, for any given ε > 0, the following holds

MTN +N TM 6 εMTM+ ε−1N TN ,

where M and N are any matrices with the appropriate dimensions, then we have

xTr (t− τ)GT ĀTPx̃(t) + x̃T (t)PĀGxr(t− τ) (43)

6 εx̃T (t)P 2x̃(t) + ε−1xTr (t− τ)GT ĀT ĀGxr(t− τ).

Employing the inequality (43), the inequality (41) can be written as

V̇2(t) 6 x̃T (t)[(A+BF )TP + P (A+BF ) + εP 2 + Z]x̃(t) + x̃T (t)PBω(t)

+ x̃T (t)PĀx̃(t− τ) + x̃T (t− τ)ĀTPx̃(t)− (1− ϑ)x̃T (t− τ)Zx̃(t

− τ) + ε−1xTr (t− τ)GT ĀT ĀGxr(t− τ) + xTr (t)(ATr Pr + PrAr

+GT ĀT ĀG)xr(t)− (1− ϑ)xTr (t− τ)GT ĀT ĀGxr(t− τ)

+ x̃T (t)[∆ATP + P∆A]x̃(t) + x̃T (t)Ph(t) + hT (t)Px̃(t) + ωT (t)BTPx̃(t).

Let ε = (1− ϑ)−1, we get

V̇2(t) + x̃T (t)(Q+ F TWF )x̃(t) (44)

6 x̃T (t)[(A+BF )TP + P (A+BF ) + (1− ϑ)−1P 2 + Z +Q

+ F TWF ]x̃(t) + x̃T (t)PĀx̃(t− τ) + x̃T (t− τ)ĀTPx̃(t)− (1− ϑ)x̃T (t

− τ)Zx̃(t− τ) + xTr (t)(PrAr +ATr Pr +GT ĀT ĀG)xr(t) + x̃T (t)[∆ATP

+ P∆A]x̃(t) + x̃T (t)Ph(t) + hT (t)Px̃(t) + ωT (t)BTPx̃(t) + x̃T (t)PBω(t),

where Q and W are positive definite matrixes, and the matrix Pr satisfies the following
Riccati algebraic equation

GT ĀT ĀG+ PrAr +ATr Pr 6 0.

By using the matrix inequality (32), the inequality (44) can be simplified as223

V̇2(t) + x̃T (t)(Q+ F TWF )x̃(t)

6 ΨTΛΨ + x̃T (t)[∆ATP + P∆A]x̃(t) + x̃T (t)Ph(t) + hT (t)Px̃(t)

+ ωT (t)BTPx̃(t) + x̃T (t)PBω(t), (45)

here Ψ = [x̃(t) x̃(t− τ)]T , and

Λ =

[
Λ11 PĀ
∗ −(1− ϑ)Z

]
,
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where Λ11 = (A+BF )TP + P (A+BF ) + (1− ϑ)−1P 2 + Z +Q+ F TWF .
Proof for S2: When the values of control input ui(t) of all input channels overbear
their upper boundaries, which means ui(t) ≥ ūi, then we have sat(ui) = ūi and

ρ̃i(ūi) > ui(t) = Fix̃(t) +Hixr(t) + µ(t)Bi
TPx̃(t) + uis(t) > ūi,

where ρ̃i(ūi) is the maximum value of ui(t). By (3) and (26), we find224

ωi(t) = ūi − Fix̃(t)−Hixr(t). (46)

Using (29), (30) and (31), we get

Fix̃(t) +Hixr(t) + uis(t) 6 |Fix̃(t) +Hixr(t) + uis(t)| (47)

6 |Fix̃(t)|+ |Hixr(t)|+ |uis(t)|
6 (1− δ1 − δ2)ūi + δ1ūi + δ2ūi

6 ūi.

From (3), (26) and (47), we have225

ωi(t) = ūi − Fix̃(t)−Hixr(t) > 0. (48)

According to the equation (23), we can obtain226

Fix̃(t) +Hixr(t) = ui(t)− µ(t)BT
i Px̃(t)− uis(t). (49)

Therefore, applying (48) and (49), we get227

ωi(t) = ūi − ui(t) + µ(t)BT
i Px̃(t) + uis(t). (50)

Since the µ(t) 6 0 and µ(t)BT
i Px̃(t) > 0, it can be asserted that

Bi
TPx̃(t) = x̃T (t)PBi 6 0.

Proof for S3: When the control input ui(t) of all input channels are less than the lower
bounds, alternatively,

−ρ̃i(ūi) 6 ui(t) = Fix̃(t) +Hixr(t) + µ(t)Bi
TPx̃(t) + uis(t) 6 −ūi,

which implies sat(ui) = −ūi. From (3) and (26), we have228

ωi(t) = −ūi − Fix̃(t)−Hixr(t) 6 0. (51)

Following the similar manner of obtaining (50), we find

ωi(t) = −ūi − ui(t) + µ(t)BT
i Px̃(t) + uis(t).

Since µ(t) 6 0 and µ(t)BT
i Px̃(t) 6 0, we get

Bi
TPx̃(t) = x̃T (t)PBi > 0.
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Proof for S4: When values of some control input ui(t) are unsaturated, but the others
are saturated. As for the unsaturated inputs, we can obtain x̃T (t)PBiωi(t) 6 0, and

ωi(t) = µ(t)BT
i Px̃(t) + uis(t).

With respect to saturated inputs the values of which are more than the supremum of
saturation function, the results in S2 imply ωi(t) > 0 and x̃T (t)PBi 6 0, then we have
x̃T (t)PBiωi(t) 6 0, thus

ωi(t) = ūi − ui(t) + µ(t)BT
i Px̃(t) + uis(t).

As for the saturated inputs the values of which are less than the infimum of saturation
function, the assertions of S3 indicate ωi(t) 6 0 and x̃T (t)PBi > 0, then we can get
x̃T (t)PBiωi(t) 6 0, and

ωi(t) = −ūi − ui(t) + µ(t)BT
i Px̃(t) + uis(t).

As indicated above, together with the inequality (45), we can assert

V̇2(t) + x̃T (t)(Q+ F TWF )x̃(t)

6 ΨTΛΨ + x̃T (t)Ph(t) + hT (t)Px̃(t) + x̃T (t)(∆ATP + P∆A)x̃(t)

+ 2x̃T (t)PB(ū− u(t) + µ(t)BTPx̃(t) + us(t)), (52)

combining with hypothesis 3, we can obtain

V̇2(t) + x̃T (t)(Q+ F TWF )x̃(t) (53)

6 ΨTΛΨ + 2‖BTPx̃(t)‖[ρ1(‖x̃(t)‖+ ‖Gxr(t)‖) + ρ3 + ρ2ū+ 2ū+ ρ̃(ū)]

+ 2‖BTPx̃(t)‖2µ(t).

By (24) and (53), we can get229

V̇2(t) + x̃T (t)(Q+ F TWF )x̃(t)

6 ΨTΛΨ

+
2(ρ1(‖x̃(t)‖+ ‖Gxr(t)‖) + ρ3 + ρ2ū+ 2ū+ ρ̃(ū))‖BTPx̃(t)‖%(x̃(t))

(ρ1(‖x̃(t)‖+ ‖Gxr(t)‖) + ρ3 + ρ2ū+ 2ū+ ρ̃(ū))‖BTPx̃(t)‖+ %(x̃(t))
.(54)

Obviously, the following inequality holds230

0 6
%(x̃(t))φ

%(x̃(t)) + φ
6 %(x̃(t)),∀%(x̃(t)) > 0, φ > 0. (55)

Then, it can be obtained that231

(ρ1(‖x̃(t)‖+ ‖Gxr(t)‖) + ρ3 + ρ2ū+ 2ū+ ρ̃(ū))‖BTPx̃(t)‖%(x̃(t))

(ρ1(‖x̃(t)‖+ ‖Gxr(t)‖) + ρ3 + ρ2ū+ 2ū+ ρ̃(ū))‖BTPx̃(t)‖+ %(x̃(t))
6 %(x̃(t)).

(56)
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Combined (54) and (56), it’s obtained that

V̇2(t) + x̃T (t)(Q+ F TWF )x̃(t) 6 ΨTΛΨ + 2%(x̃(t)).

If there exist some matrices X > 0 and Z > 0 such that

Λ =

[
Λ11 PĀ
∗ −(1− ϑ)Z

]
< 0,

then, λ(Λ) < 0. Thus

V̇2(t) + x̃T (t)(Q+ F TWF )x̃(t) 6 λmin(Λ)‖Ψ(t)‖2 + 2%(x̃(t)).

Here, we choose

%(x̃(t)) 6
1

2
x̃T (t)(Q+ F TWF )x̃(t) 6

1

2
λmax(Q+ F TWF )‖x̃(t)‖2.

Moreover, according to the representation of the Lyapunov function V2(t), there exist232

two K−class functions α1(·), α2(·) such that233

α1(‖x̃(t)‖) 6 V2(x̃(t)) 6 α2(‖x̃(t)‖), (57)

which implies234

α1(‖x̃(t)‖) =

∫ t

0
V̇2(x̃(s))ds+ V2(x̃(0))

6 α2(‖x̃(0)‖) +

∫ t

0
λmin(Λ)‖Ψ(s)‖2ds+ 2

∫ t

0
%(x̃(s))ds, (58)

which together with (18) gives235

α1(‖x̃(t)‖) 6 α2(‖x̃(0)‖) + 2

∫ t

0
%(x̃(s))ds (59)

6 α2(‖x̃(0)‖) + 2%.

Then, we can conclude that for any t > 0,

−
∫ t

0
λmin(Λ)‖Ψ(s)‖2ds 6 α2(‖x̃(0)‖) + 2

∫ t

0
%(x̃(s))ds (60)

6 α2(‖x̃(0)‖) + 2%̄,

which implies that236

− lim
t→+∞

[ ∫ t

0
λmin(Λ)‖Ψ(s)‖2ds

]
6 α2(‖x̃(0)‖) + 2%̄ < +∞. (61)

15



Hence, it follows from Barbalat’s Lemma that

lim
t→+∞

[ ∫ t

0
λmin(Λ)‖Ψ(t)‖2ds

]
= 0,

furthermore

lim
t→+∞

‖Ψ(t)‖ = 0.

As indicated above, the auxiliary state x̃(t) converges to zero asymptotically. Thus,237

based on the relationship of x̃(t) and e(t), it can be asserted that the system output238

y(t) can be forced to track the reference state yr(t) asymptotically.239

4. Conclusion240

Compared with the results in literatures [33, 35, 42, 51, 52, 53], the system considered241

in this paper is fractional-order uncertain system with time delays and saturation242

function, which is very complex. The tracking controller is designed by CNF control243

approach. Furthermore, based on fractional-order Mittag-Leffer asymptotical stability244

theorem, the asymptotical tracking and stability of the controller proposed is proved by245

designing a fractional-order Lyapunov function and the fractional Barbalat’s Lemma.246
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