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Abstract:  

The intension of the recent study is to solve a class of biological nonlinear HIV infection model of 

latently infected CD4+T cells using feed-forward artificial neural networks, optimized with global 

search method, i.e. particle swarm optimization (PSO) and quick local search method, i.e. interior-

point algorithms (IPA). An unsupervised error function is made based on the differential equations 

and initial conditions of the HIV infection model represented with latently infected CD4+T cells. 

For the correctness and reliability of the present scheme, comparison is made of the present results 

with the Adams numerical results. Moreover, statistical measures based on mean absolute 

deviation, Theil’s inequality coefficient as well as root mean square error demonstrates the 

effectiveness, applicability and convergence of the designed scheme. 

Keywords: HIV infection, particle swarm, hybrid approach, interior-point algorithm, artificial 

neural networks, statistical analysis. 

Nomencleature 

1. Introduction 

HIV is known as a hazardous virus that grows by exploitation of body fluids and damage the 

immune system of the body. It destroys and kills many of the CD4 cells (T cells), so the body fails 

to fight off disease and infections, due to this, the CD4 cells are reduced. The attack on the immune 

system weakens the performance of the body to resist against infections and other diseases. Many 

serious/global diseases like cancer, HIV/AIDS and opportunistic infections get the advantage of 

the weak body’s immune system. The huge amount has been spent for the treatment of these kinds 

of diseases every year, but no cure is found yet [1]. The research community has introduced 
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valuable mathematical formulations for understanding the dynamics of HIV infection spread and 

disease progression [2-6]. Research community shows that a substantial concentration of the T 

cells is effected via HIV virus attack and they presented a mathematical model of HIV infection 

spread in 1989 [7]. The main features of this model have three variables: infected, uninfected and 

virus free cells. 

To present the HIV infection model, the infected CD4+ T-cells [7-8] are assumed in latent or active 

state. Due to infection, most of the healthy T-cells lost, however, a small proportion of said cells 

may be productively infected, i.e., in active or latent state. The mathematical model of HIV 

infection in simple terms is given as follows [9-10]: 

1

2

3

4

, (0) ,

( 1) , (0) ,

, (0) ,

, (0) .

dx
dx xv x S

dt

dw
q xv ew w w S

dt

dy
w ay q xv y S

dt

dv
uv ky v S

dt

 

 

 


= − − =


 = − − − − =


 = − + =


 = − + =


 (1) 

where x, w, y, and  v stand for susceptible, infected, recover and latently infected CD4+T virus 

cells, with respective initial concentrations of 1 2 3 4, , andS S S S ,   is a constants for recovery rate, 

  is the rate of infection,   is the rate of iterance of uninfected CD4+T cells,  d stands for rate of 

death for susceptible CD4+T cells, a is the death rate of HIV recover cells, e is the infection rate 

by recombination, k is the rate of latently infection HIV cells, u is the death rate of latently infected 

cells and q is the removal rate of recombinants. 

To solve the biological model (1) is not easy due to the nonlinearity. However, only a few 

techniques are available in the literature to solve the biological nonlinear HIV infection model of 

latently infected CD4+T cells. Few of them are Adomian decomposition method [10], finite 

difference scheme [11], Legendre wavelet method [12], sequential Bayesian analysis approach 

[13], homotopy analysis method [14], Bessel collocation technique [15] and method of differential 

transformation [16]. 

All the above mention techniques have their individual merits/demerits, advantages/disadvantages, 

whereas, stochastic numerical solvers based on artificial neural networks (ANNs) are found to be 

efficient, precise and consistent for solving competently optimization models arising in various 

fields [17-21]. Some recent applications of stochastic solvers are nonlinear prey-predator models 

[22], nonlinear Troesch's problem arising in plasma physics [23], cell biology [24], inverse 

kinematics problems [25], thin-film flow [26], uncertainties in computational mechanics [27], 

power [28], fuzzy differential equations [29], nanofluidic problems [30], nonlinear singular 

Thomas-Fermi systems [31], doubly-singular systems [32], heat conduction model of human head 

[33], transistor-level uncertainty quantification [34], control system [35] and energy [36]. 

The aim of the present work is to solve the HIV model (1) numerically by using the ANNs 

optimized by particle swarm optimization (PSO), interior-point algorithm (IPA) and the hybrid 

combination of PSO-IPA. Some prime features of the present scheme are as follows: 



• A novel development of ANNs based numerical computing method is presented to obtain 

the accurate and consistent approximate solutions for the nonlinear biological model of 

HIV infection spread. 

• The presented approach is implemented viably to solve the nonlinear biological model and 

outcomes of the designed scheme are in good agreement with the Adams numerical results 

that endorsed its worth. 

• Validation via statistics through reasonable accurate values of different performance 

metrics in terms of minimum, maximum, median and semi interquartile ranges. 

2. Design Methodology 

The proposed structure of the present scheme of the model (1) is divided into two portions. By 

introducing an error based fitness function and the combination of PSO-IPA along with the 

pseudocode is discussed in detail, while and the graphical abstract of PSO-IPA is plotted in Fig. 

1. 

2.1 ANN Modeling 

The formulation of the model (1) with feed-forward ANNs in the form of ( ), ( ), ( )and v(t)x t w t y t , 

as well as, their respective n derivatives are given as: 

, , , , , ,

1 1

, , , , , ,

1 1

( ), ( ),
ˆ ˆ( ), ( ),

,
ˆ ˆ( ), ( )

( ), ( )

m m

x i x i x i w i w i w i

i i

m m

y i y i y i v i v i v i

i i

h t b h t b
x t w t

y t v t
h t b h t b

   

   

= =

= =

 
+ + 

   =    
+ + 

 

 

 

 

(2) 

 
( ) ( )

, , , , , ,( ) ( )
1 1

( ) ( )
( ) ( )

, , , , , ,

1 1

( ), ( ),
ˆ ˆ, ,

.
ˆ ˆ,

( ), ( )

m m
n n

x i x i x i w i w i w in n
i i

n n m m
n n

y i y i y i v i v i v i

i i

h t b h t b
x w

y v
h t b h t b

   

   

= =

= =

 
+ + 

 
 = 
   + + 
 

 

 

 

Where W is the unknown weight vector and defined as: 

[ , , , ]x w y v=W W W W W , for [ , , ]x x x x=W b  , [ , , ],w w w w=W b   [ , , ]y y y y=W b   and 

[ , , ].v v v v=W b   The weight vector W is given as: 
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Using the log-sigmoid activation function
1

1 exp( )t+ −
. The updated form of the network (2) 

becomes as: 
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Using the model (3), the fitness/error function is written as: 

1 2 3 4 5 ,     = + + + +  (4) 

2

1

1

1
,

N
m

m m m

m

dx
dx x v

N dt
  

=

 
= − + + 

 
  (5) 

2

2

1

1
( 1) ,

N
m

m m m m

m

dw
q x v ew w

N dt
  

=

 
= + − + + 

 
  (6) 

2

3

1

1
,

N
m

m m m m

m

dy
w ay q x v

N dt
  

=

 
= − + − 

 
  (7) 

2

4

1

1
,

N
m

m m

m

dv
uv ky

N dt


=

 
= + − 

 
  (8) 

( ) ( ) ( ) ( )( )2 2 2 2

5 0 1 0 2 0 3 0 4

1
ˆ ˆ ˆ ˆ ,

3
x S w S y S v S = − + − + − + −  (9) 

for ( ) ( ) ( ) ( )
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,m m m m m m m m mN x x t w w t y y t v v t t mh
h

= = = = = = ˆ
mx , ˆ

mw , ˆ
my , and ˆ

mv  are 

representing the approximate solution for susceptible, x, infected w, recovered y, and latently 

infected v CD4+T virus cells for the mth input grid point, respectively. Accordingly, 1 , 2 ,  3  

and 4  are the fitness functions associated with differential equations of the model (1) for 

susceptible, x, infected w, recovered y, and latently infected v CD4+T virus cells, respectively. 

while, 5   is the error function related to the initial condition of model (1). The proposed 

approximate solution can be attained from the available weights for which the fitness function in 

equation (4) approaches to zero, i.e., 0 → . Then the approximate solutions  ˆ ˆ ˆ ˆ( ), ( ), ( ), ( )x t w t y t v t



become identical with exact/desire results, i.e., ˆ[ ( ) ( )]x t x t→ , ˆ[ ( ) ( )],w t w t→  ˆ[ ( ) ( )]y t y t→  and 

ˆ[ ( ) ( )]v t v t→ . 
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Figure 1: Graphical illustration of presented scheme for HIV infection model of latently infected 

cells 

 



2.2. Optimization procedure: PSO-IPA 

For optimization of ANNs, hybrid-computing framework based on PSO-IPA is used.  

The PSO is a kind of effective global search heuristics method for optimization, suggested by 

Eberhart and Kennedy [37] and exploited by the research community as a replacement of genetic 

algorithms (GAs). The PSO is used as an optimization procedure because of easy implementation 

and short memory requirements [38-39]. Few recent potential applications addressed by PSO 

include fuel ignition model [40], solar photovoltaic system [41] and clustering high-dimensional 

data [42]. Therefore, PSO based algorithm should be testing for analysis of still nonlinear systems 

represented with differential equations [43-47].  

In the theory of search space, every single candidate solution is denoted as a particle, and set of 

particles formulate a swarm. The position and velocity in the swarm are denoted by 1a

LB

−
P  and 1a

GB

−
P , 

respectively. The optimization model of PSO in standard mathematical notation is presented as 

follows: 

 
1 1a a a

j j j

− −= +X X V , (10) 

 

 
1 1 1 1 1

1 2 2( ) ( )a a a a a a

j j 1 LB j GB ja a − − − − −= + − + −V V r P X r P X , 
(11) 

where the vector Xj and Vj represents the jth particle of the swarm and associated velocity vector, 

respectively. The random vectors are 1r and 2r ,  is the inertia weight of previous velocity, 

whereas, a1 and a2 are the local and global acceleration factors, respectively. The superscript α is 

the flight index. The performance of global search with PSO is further enhanced with the help of 

Interior-point algorithm, i.e., an efficient, rapid and fast local search optimization algorithm. Few 

IPA equally effective for both constrained and unconstrained optimization tasks. Recently, IPA is 

exploited in many fields e.g., active noise control problems [48], simulation of aircraft parts 

riveting [49], simulation of viscoplastic fluid flows [50], reliable treatment of economic load 

dispatch problem [51], for non-smooth contact dynamics [52] and non-smooth contact dynamics. 

In the proposed study, a hybrid computing tool PSO-IPA is exploited to tune the decision variables 

of ANN representing the model (1). The pseudocode of PSO-IPA is presented in Table 1. 

3. Performance indices 

The performance measures for the HIV model (1) based on mean absolute deviation (MAD), root 

mean square error (RMSE) and Theil’s inequality coefficient (TIC). The mathematical form of 

MAD, RMSE and TIC is given as: 
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Table 1: Pseudo code using PSO-IPA 

Start of PSO  

 Inputs: 

  The chromosome with same number of entries of the network 

 [ , , , ] [( , , ), ( , , ), ( , , ), ( , , )]x w y v x x x w w w y y y v v v= =W W W W W b b b b         
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[
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 Population: The set of chromosomes is  

 

 1 2 1 2 1 2 1 2[( , ,..., ), ( , ,..., ), ( , ,..., ), ( , ,..., )]x x xn w w wn y y yn v v vn=P W W W W W W W W W W W W   

 [ , , , ] [( , , ), ( , , ), ( , , ), ( , , )]xi wi yi vi xi xi xi wi wi wi yi yi yi vi vi vi=W W W W b b b b         

 Output: Global best values of PSO is denoted as WB:PSO 

  

Initialization 

  Produce W of real numbers to signify a chromosome to make an 

  Initial P. Set the practice of Generation and declarations values 

  of “PSO” and “gaoptimset” measures 

 Calculations of Fitness 

  To calculate the fitness   using Eq.(4) 

 Ranking 

  Each W of P ranked through brilliance of the fitness rate. 

 Stopping criteria 



 Stop the optimization procedure for any of the following 

• Level of fitness achieved 

• Number of preferred flights/cycles performed 

 Renewal 

Call the position using equations (10) and velocity using equation (11). 

 Improvement  

  Repeat the algorithm until the whole number of flights achieved

 Storage 

  Store the best fitness values and signify it the global best 

  particle. 

End of PSO algorithms 

 

PSO-IPA Procedure Start 

 Inputs 

  WB:GA 

 Output 

  The best vector of PSO:IPA is WPSO:IPA 

 Initialize 

  Use WB:GA as a start point 

  Decelerations and bounded based on “optimset” and “fmincon”  

  routines,  

 Termination 

  When any of the value meet, stop the algorithm 

  ‘Fitness limit’ = ‘  ≤ 10-18’, ‘total Iterations’ = ‘1000’, 

  ‘TolFun’ ≤ ‘10-18’, ‘TolX’ ≤ ‘10-18’, ‘TolCon’ ≤ ‘10-20’,  

   ‘MaxFunEvals’ ≤ ‘250000’ 

 While (Terminate) 

  Fitness calculation 

  Using Eqs (4-9), find the fitness   

  Adjustments 

  Invoking ‘fmincon’ routine using algorithm ‘IPA’ to adjust W. 

  Go to the step of fitness with updated W 

 End 

  Save the final adaptive weights WPSO-:IPA and  , iterations, time

  and function count for the current run. 

PSO-IPA Procedure End 

3. Results and discussion 

The detailed result and discussion of the model (1) is presented in this section by taking five 

number of neurons. The comparative study with the Adams numerical results is also presented to 

show the exactness and correctness of the proposed scheme. Moreover, statistical results are 

performed to check the precision and accuracy of the present technique. 

 

 



3.1 HIV infection model involving latently infected cells  

The updated form of the model (1) by taking the values reported in the literature for HIV infection 

[10] as listed in Table 2 

 

Table 2: List of parameter and setting used for reported study of HIV infection model 

Index Description Settings [10] 

S1 Initial value of uninfected CD4+T cells 7 

S2 Initial value of infected CD4+T cells 2 

S3 Initial  value of Virus free cells 1 

S4 Initial value of latently infected cells 4 

µ Rate of uninfected CD4+T cells 0.4 

λ Recovery Rate of infected cells 0.3 

d Death rate of uninfected CD4+T cells 0.01 

α Rate of infection spread 0.04 

q Rate of removal of recombinants 0.8 

e Rate of infection of recombinants 0.1 

a Death rate of virus free cells 0.2 

u Death rate of latently infected cells 0.03 

 

The using the parameters as defined in Table 2, the model (1) is written in updated form as follows: 
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The error/fitness function of the model (15) is written as: 
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Optimization of all variants of the model (1) is supported by the combination of PSO-IPA for 

hundred numbers of runs to achieve the network parameters. The weights set is provided to obtain 

the approximate solution for the model (1). The mathematical form of the approximate solution 

becomes as: 
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The graphic illustration using GA-IPA for all the parameters of example 1 is narrated in Figures 

2-7 in case of 5 neurons in ANN models. The set of weights for the parameters x(t), w(t), y(t) and 

v(t) using the best fitness values for 5 number of neuron is shown in Fig 2. The outcomes of 

proposed method ANN-PSO-IPA are presented in Fig. 3. The absolute error (AE) is calculated for 

the parameters x(t) and w(t) in the first half of Fig. 4, while the AE for y(t) and v(t) is calculated in 

the second half of Fig. 4. The presented results are compared with the Adams method based 

numerical results. It is clear in Fig. 4(a), that the AE for x(t) and w(t) lie in the ranges of 10-06 to 

10-07, while the AE for y(t) and v(t) lie around 10-05 to 10-07. In these figures, the comparison with 

standard numerical results using 5 number of neurons in ANN models are provided. The first 

portion of the Fig. 4 shows the comparison for x(t) and w(t), while the second portion related the 

values of y(t) and v(t). The overlapping of the present results with the Adams numerical results 

show the correctness and exactness of the present scheme. The performance measures along with 

the histograms of the statistical operators MAD, RMSE and TIC are narrated in Figs. 5 to 7. One 

may infer from results presented in these graphical illustration 80% or more of independent runs 

achieved the reasonable precise level of the statistical indices of MAD and RMSE. However, the 

level increasing up to 90% in case of TIC metric.  

 

 



  

(a): Weights of 5 neurons for x(t) (b): Weights of 5 neurons for w(t) 

  

(c): Weights of 5 neurons for y(t) (d): Weights of 5 neurons for v(t) 

Figure 2: Trained weights or decision variables of ANN on the basis of best fitness achieved 

 

 

For precision analysis, statistical gages based on minimum (Min), Maximum (Max), median (Med) 

and semi interquartile range (SIR) are provided for the present technique. SIR is one-half of the 

difference of third quartile (Q3=75% data) and first quartile (Q1= 25% data). The statistical 

conclusions in Min, Max, Med and SIR gages for problem 1 are tabulated in Tables 3 for x(t) and 

w(t), while in Table 4 for y(t) and v(t). The scale of Min values for x(t), w(t), y(t) and v(t) lies 

around 10−07 to 10−09 for all neurons. However, the Med and SIR values for x(t), w(t), y(t) and v(t) 

are closer to 10−05.  

 

 



 
(a): Dynamics of HIV infection model 

  
(b): Variation of x(t) (c): Variation of w(t) 

  
(d): Variation of y(t) (e): Variation of v(t) 

Figure 3: Results for HIV infection spread model 
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 (a): Results on AE for 5 number of neurons in case of x(t) and w(t) 
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 (b): Results on AE for 5 number of neurons in case of y(t) and v(t) 

Figure 4: Comparative study on AE of the presented solutions using 5 neurons with the Adams 

results  
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(a) Convergence analysis on MAD for x(t) and w(t) 
 

  
 (a): Histogram for x(t) (c): Histogram for w(t) 
 

  
 (c): Histogram for y(t) (d): Histogram for v(t) 
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(a) Convergence analysis on MAD for x(t) and w(t) 

Figure 5: Analysis on MAD for convergence along with the histograms for 5 neurons 
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(a) Convergence analysis on RMSE for x(t) and w(t) 
 

  
 (a): Histogram for x(t) (c): Histogram for w(t) 
 

  
 (c): Histogram for y(t) (d): Histogram for v(t) 
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(a) Convergence analysis on RMSE for x(t) and w(t) 

Figure 6: Analysis on RMSE for convergence along with the histograms for 5 neurons 
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(a) Convergence analysis on RMSE for x(t) and w(t) 
 

  
 (a): Histogram for x(t) (c): Histogram for w(t) 
 

  
 (c): Histogram for y(t) (d): Histogram for v(t) 
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(a) Convergence analysis on RMSE for x(t) and w(t) 

Figure 7: Analysis on TIC for convergence along with the histograms for 5 neurons 

 



Table 3: Statistics based results of Problems 1 for x(t) and w(t) 

t 
x(t) w(t) 

Min Max Med SIR Min Max Med SIR 

0 1.998E-08 1.301E-04 4.388E-06 6.397E-06 3.113E-09 1.301E-04 4.174E-06 6.611E-06 

0.05 8.551E-08 1.589E-04 1.004E-05 1.259E-05 3.198E-08 1.589E-04 1.194E-05 1.105E-05 

0.1 4.509E-08 2.279E-04 1.028E-05 1.091E-05 2.524E-07 2.279E-04 1.370E-05 1.140E-05 

0.15 4.956E-08 2.215E-04 1.250E-05 1.275E-05 2.549E-07 2.215E-04 1.146E-05 9.729E-06 

0.2 6.438E-08 1.616E-04 1.741E-05 1.377E-05 8.992E-08 1.616E-04 1.288E-05 8.493E-06 

0.25 5.030E-08 1.457E-04 1.908E-05 1.661E-05 1.129E-07 1.457E-04 1.528E-05 1.087E-05 

0.3 6.339E-07 2.105E-04 2.403E-05 1.841E-05 3.475E-07 2.105E-04 1.953E-05 1.562E-05 

0.35 4.128E-07 2.715E-04 2.713E-05 2.136E-05 9.346E-07 2.715E-04 2.435E-05 2.053E-05 

0.4 3.134E-07 3.223E-04 2.605E-05 2.174E-05 3.145E-07 3.223E-04 2.833E-05 2.512E-05 

0.45 7.816E-07 3.581E-04 2.430E-05 2.454E-05 3.531E-08 3.581E-04 2.842E-05 2.762E-05 

0.5 1.070E-07 3.890E-04 1.856E-05 2.195E-05 6.311E-08 3.890E-04 2.729E-05 2.849E-05 

0.55 2.030E-07 4.076E-04 1.487E-05 2.009E-05 6.073E-08 4.076E-04 2.555E-05 2.452E-05 

0.6 6.517E-07 3.911E-04 1.373E-05 1.531E-05 7.377E-08 3.911E-04 2.546E-05 1.906E-05 

0.65 2.623E-07 3.407E-04 1.547E-05 1.306E-05 4.930E-08 3.407E-04 1.726E-05 1.391E-05 

0.7 3.408E-07 2.740E-04 1.233E-05 1.005E-05 1.147E-07 2.740E-04 1.204E-05 1.102E-05 

0.75 5.650E-08 2.213E-04 1.008E-05 1.004E-05 2.021E-08 2.213E-04 9.210E-06 1.332E-05 

0.8 2.904E-07 2.258E-04 9.166E-06 1.047E-05 1.825E-08 2.258E-04 1.020E-05 1.194E-05 

0.85 3.924E-07 2.711E-04 1.410E-05 1.356E-05 1.099E-07 2.711E-04 1.339E-05 1.223E-05 

0.9 1.588E-07 2.945E-04 1.820E-05 1.706E-05 1.440E-08 2.945E-04 1.708E-05 1.337E-05 

0.95 5.847E-07 2.877E-04 1.806E-05 1.426E-05 5.604E-07 2.877E-04 1.570E-05 1.293E-05 

1 7.597E-08 2.424E-04 1.143E-05 1.062E-05 8.419E-08 2.424E-04 8.416E-06 7.541E-06 

 

4. Conclusions 

Concluding remarks of the presented scheme ANN-PSO-IPA are briefly listed as follows: 

• A novel numerical computing method is presented for solving nonlinear biological HIV 

infection model of latently infected cells using artificial neural network optimized by 

global capabilities of particle swarm optimization and efficacy of local search with interior-

programming algorithm. 

• The accuracy of presented scheme is verified by obtaining the overlapping outcomes with 

the Adams results having accuracy level up to 4–6 decimal places which proves the 

exactness for the designed scheme. 

• The magnitudes of median and semi interquartile range calculated for 100 self-directed 

executions for a biological nonlinear HIV model that indicate the trustworthiness, steady 

and accurateness of the algorithm. 

• Numerical values listed in the Tables (3-4) and graphical results presented in the figures 

(2-7) for different performance indices of MAD, RMSE and TIC authenticate the 

correctness, stability and reliability of the presented scheme. 

In future one may exploited the proposed ANN-PSO-IPA as an alternate solver for the solution of 

potential nonlinear systems [53-60]. 

 

 



Table 4: Statistics based results of Problems 1 for x(t) and w(t) 

t 
x(t) w(t) 

Min Max Med SIR Min Max Med SIR 

0 9.421E-08 1.301E-04 6.175E-06 1.030E-05 5.164E-08 1.301E-04 4.158E-06 4.250E-06 

0.05 4.070E-08 1.589E-04 1.133E-05 1.555E-05 3.759E-08 1.589E-04 7.579E-06 9.194E-06 

0.1 5.235E-08 2.279E-04 9.231E-06 1.404E-05 9.858E-08 2.279E-04 8.595E-06 8.275E-06 

0.15 2.757E-08 2.215E-04 1.348E-05 1.372E-05 9.789E-08 2.215E-04 1.579E-05 1.522E-05 

0.2 7.820E-07 1.616E-04 1.808E-05 1.286E-05 3.530E-07 1.616E-04 2.277E-05 1.817E-05 

0.25 2.741E-07 1.457E-04 2.128E-05 1.488E-05 1.066E-06 1.457E-04 2.576E-05 2.443E-05 

0.3 7.716E-07 2.105E-04 2.614E-05 1.637E-05 5.925E-08 2.105E-04 2.364E-05 2.975E-05 

0.35 2.699E-07 2.715E-04 2.553E-05 1.442E-05 3.058E-07 2.715E-04 2.241E-05 2.937E-05 

0.4 1.796E-07 3.223E-04 1.946E-05 1.608E-05 8.486E-08 3.223E-04 2.012E-05 2.138E-05 

0.45 1.073E-07 3.581E-04 1.645E-05 1.803E-05 1.105E-07 3.581E-04 1.677E-05 1.496E-05 

0.5 2.976E-08 3.890E-04 1.560E-05 1.612E-05 4.072E-08 3.890E-04 1.542E-05 1.166E-05 

0.55 9.826E-08 4.076E-04 1.616E-05 1.606E-05 2.743E-08 4.076E-04 1.579E-05 1.458E-05 

0.6 4.456E-08 3.911E-04 1.605E-05 1.441E-05 3.272E-07 3.911E-04 1.621E-05 1.618E-05 

0.65 1.348E-07 3.407E-04 1.767E-05 1.548E-05 1.072E-07 3.407E-04 2.314E-05 1.614E-05 

0.7 3.462E-07 2.740E-04 2.004E-05 1.229E-05 7.168E-07 2.740E-04 2.655E-05 1.684E-05 

0.75 2.145E-07 2.213E-04 1.685E-05 1.397E-05 9.990E-07 2.213E-04 1.886E-05 1.466E-05 

0.8 2.705E-08 2.258E-04 1.828E-05 1.671E-05 9.100E-08 2.258E-04 1.548E-05 1.373E-05 

0.85 6.305E-07 2.711E-04 1.631E-05 1.796E-05 1.789E-07 2.711E-04 1.919E-05 1.709E-05 

0.9 1.322E-07 2.945E-04 1.627E-05 1.598E-05 1.762E-07 2.945E-04 2.308E-05 2.153E-05 

0.95 8.401E-07 2.877E-04 1.575E-05 1.348E-05 5.706E-07 2.877E-04 2.414E-05 1.856E-05 

1 3.167E-07 2.424E-04 1.499E-05 1.057E-05 2.620E-07 2.424E-04 1.648E-05 1.235E-05 
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