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Abstract: In this study, a novel stochastic computational frameworks based on fractional Mayer 
wavelet artificial neural network (FMW-ANN) is presented for effective numerical treatment for 
nonlinear singular fractional Lane-Emden (NS-FLE) differential equation. The modeling strength 
of FMW-ANN is used to transformed the differential NS-FLE system to difference equations and 
approximate theory is implemented in mean squared error sense to develop a merit function for 
NS-FLE differential equations. Meta-heuristic strength of hybrid computing by exploiting global 
search efficacy of genetic algorithms (GA) supported with local refinements with efficient 
active-set (AS) algorithm is used for optimization of design variables FMW-ANN., i.e., FMW-
ANN-GASA. The proposed FMW-ANN-GASA methodology is implemented on NS-FLM for 
six different scenarios in order to exam the accuracy, convergence, stability and robustness. The 
proposed numerical results of FMW-ANN-GASA are compared with exact solutions to verify the 
correctness, viability and efficacy. The statistical observations further validate the worth of 
FMW-ANN-GASA for the solution of singular nonlinear fractional order systems. 
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1. Introduction 

The study of fractional differential equations (FDEs) is considered very important in almost all 
the field in-particular mathematics, physics, control systems and engineering. Fractional calculus 
and FDEs have been studied during the last three decades using different operators: few of 
paramount significance are Erdlyi-Kober operator [1], operator of the Riemann-Liouville [2], 
Caputo operator [3], Weyl-Riesz operator [4] and Grnwald-Letnikov operator [5]. The study of 
these fractional derivative operators has growing interest in the research community due to their 
use in the modeling of viscoplasticity [6-7], dynamic systems [8], thermal analysis of disk brakes 
[9], real materials [10], fluid mechanics [11], glass forming materials [12], electromagnetic 
theory [13], viscous dampers [14] and fast desorption process of methane in coal [15] and many 
more [16-17]. 

There are many linear/nonlinear, singular/nonsingular, initial, boundary value problems (BVPs) 
are considered very complicated to solve with traditional numerical and analytical procedure, 
one of such class is nonlinear singular Lane-Emden system. The Lane-Emden model exists in 
quantum mechanics as well as astrophysics and normally consider to be very stiff to be solved 
due to existence of singularity at the origin. Many deterministic techniques have been 
implemented to solve Lane-Emden equations such as homotopy perturbation technique [18], 
sinc-collocation technique [19], variational iteration technique [20] and many more [21-24] etc. 
All these analytical/numerical schemes have their own individual merits and drawbacks over one 
another, while stochastic numerical solver based on soft computing or machine learning 
methodologies have not be yet exploiting for the solution of nonlinear singular fractional Lane-
Emden (NS-FLE) system. The general form of NS-FLE equation is given as [25]: 

where !  and !  are constants, !  is a continuous 
function and D is fractional derivative operator. Aim of the present work is to solve the model (1) 
via intelligent computing techniques based on neural networks and their optimization with hybrid 
meta-heuristic methodologies. 

The meta-heuristic based numerical computing has been extensively implemented by the 
research community for solving linear/nonlinear systems by functioning strength of neural 
networks (NN) and effective adaptation with evolutionary computing paradigms [26-30]. Some 
recent applications of the evolutionary computing are cell biology [31], nonlinear prey-predator 
models [32], nonlinear reactive transport model [33], nonlinear Troesch's problem [34], 
nonlinear singular Thomas-Fermi systems [35], nonlinear doubly singular systems [36], 
micropolar fluid flow [37], magnetohydrodynamic flow [38], heartbeat model [39], control 
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systems [40], heat conduction model of the human head [41], power [42] and energy [43]. These 
contributions have been proven the value, worth and significance of stochastic solvers based on 
convergence, accuracy and robustness.  

Keeping in view all these application, authors are interested to explore/exploit the stochastic 
numerical solvers for, reliable, efficient and stable technique for solving the NS-FLE equation. 
Aim of the present work is to solve the model (1) via intelligent computing based on fractional 
Mayer wavelet artificial neural network (FM-ANN) optimized by the hybrid strength of genetic 
algorithm (GA) and active-set (AS) algorithm, i.e., FMM-ANN-GAAS. The salient features of 
proposed FMM-ANN-GAAS are listed as follows: 

• Novel design of fractional Mayer wavelet neural network optimized with integrated 
heuristics of GA aided with AS algorithm is presented for solving variants of fractional 
Lane-Emden system represented with singular nonlinear differential equations involving 
fractional derivative terms. 

• The proposed FMM-ANN-GAAS scheme is applied for variants of NS-FLE systems and 
comparison of the results from available exact solution verify the correctness for solving 
these singular fractional order systems. 

• The performance accreditation established through results of statistical investigations in 
terms of semi interquartile range, mean absolute error, Theil’s inequality coefficient and 
root mean square error measures. 

• The simple coherent structure of Mayer wavenets, availability of solutions on entire 
continuous training domain, smooth implementation procedure, reliable, robust, stability, 
extendibility are other worry assurances of the proposed stochastic numerical solver. 

Remaining of the paper is organized as follows. In section 2, the design procedure adopted for 
formulation of Mayer wavenet and their optimizations with hybrid computation heuristics of 
GAAS algorithm. In Section 3, an overview of the performance indices is presented. In Section 
4, numerical experimentations of proposed FM-ANN-GAAS is presented along with the 
observations on statistics. In Section 5, the concluding remarks and future research opening are 
listed.  

2. Designed Methodology 

The FMW-ANN is designed for solving singular FDEs in this section. The formulation for 
designing the differential equation models, fitness function, and optimization procedure based on 
combination of GA-ASA is presented here. 

2.1 Fractional Mayer Wavelet Neural Network 

The ANN based models are familiar to provide the solution for the number of applications in 
various fields [44-45]. In the FMW-ANN; is used for the proposed solution and its nth order 

integer derivatives is !  while the fractional order derivative is ! , and expression 
of these networks are respectively given as: 

ˆ( )y x
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where m represents the number of neurons, a, b and c are the vector component of weight matrix 
W as: 

	 � , for ! 	

while, the Mayer wavelet kernel is defined as: 

Using the Mayer wavelet kernel in the equation (3) in set of equations (2), we have: 

The arbitrary combination of the FMW-ANN can be used to solve NS-FLE system (1) subject to 
availability of appropriate weight matrix W. In order to determine the weights of FMW-ANN, 
one may exploit the approximation theory in mean squared error sense to formulate a fitness 
function E as: 

where E1 is the error function related to NS-FLE equation (1) and E2 is used for initial conditions 
for the model (1), and are respectively given as: 
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for ! .		

One may determine the solution of NS-FLE model (1) with the obtainability of suitable weights 
W, such that ! , the approximate outcomes of FMW-ANN become neat to identical with the 
exact/optimal solutions, i.e., ! . 

2.2 Networks optimization 

The optimization of parameter for FMW-ANN is carried out using the hybrid computing 
framework based on GAs and AS techniques.  

Genetic Algorithm is an optimization solver for the constrained/unconstrained global 
optimization problems and formulated on mathematical modelling of natural genetic process. 
GAs continually changes a population of individual, i.e., candidate solutions of optimization task 
and has ability to solve a variety of optimization problems by incorporated its reproduction tools 
via crossover, selection, elitism and mutation operators. Recently applications address with GAs 
include optimization of steel space frames with semi-rigid connections [46], control structure for 
a car-like robot [47], modelling and identification of nonlinear multivariable systems [48], 
optimization of investments in Forex markets with high leverage [49], a fully customizable 
hardware implementation [50], characterization of hyperelastic materials [51], evaluation of apparent 
shear stress in prismatic compound channels [52], detection of loss of coolant accidents of nuclear 
power plants [53], torque estimation problem [54] and prediction of biosorption capacity [55]. 
GAs hybridized with local search technique can upgrade its laziness trough the optimization 
procedure. 

Active-set algorithm is an efficient local search methodology for rapid fine tuning of optimization 
tasks in different applications arising in broad fields. AS method belongs to efficient convex 
optimization solver exploit for both constrained and unconstrained problems. Few renewed 
applications addressed effectively by AS algorithm are models of Sisko fluid flow and heat 
transfer [56], for optimization extreme learning machines [57], symmetric eigenvalue 
complementarity problem [58], induction motor models [59], sidescan sonar image segmentation 
[60] and cardiac defibrillation [61].  

The hybridization of GAs with AS, i.e., GAAS, is exploited for finding the design variables of 
FMW-ANN in order to solve the NS-FLE system. The brief descriptive procedure of 
optimization with GAAS algorithm in the form of pseudocode is presented in Table 1. 

Table 1: Pseudo code of GAAS optimization tool to find the weights of FMW-ANN  
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Genetic Algorithms started 
 Inputs: 

  The chromosome with entries equal to weights of FMW-ANN as: 

  !  for !  
  Initial population based on n number of chromosome’s W as: 

  ! , for !  
 Output:  
  The best optimized weights for FMW-ANN by GA, WBest-GA. 
 Initialization 
  Construct W with real bounded entries and set of W to form P. 
Set   settings of ‘GA’ and ‘gaoptimset’ routines 
 Fitness evaluation 
  Obtained the E for each W in P by equations (5). 
 Termination 
  Terminate the for any of the following 

 ‘Fitness’’ E → 10-15, Tolerances ‘TolFun’→10-20, ‘TolCon’→10-20, 
 ‘StallGenLimit’ →100. ‘Generations'→75, ‘PopulationSize’→ 300 
 and default other. 
 Go to step storage, when termination condition meets,  

 Ranking 
  Ranked each W of P on E given in equation (5). 
 Reproduction 

 Create new P using Selection, Crossover and Mutations routines 
 ‘ @ s e l e c t i o n u n i f o r m ’ , ‘ @ c r o s s o v e r h e u r i s t i c ’ a n d 
 ‘@mutationadaptfeasible’, respectively. Four best ranked W of P 
 for elitism:  
 Go to ‘fitness evaluation’ step 

 Storage 
  Save WBest-GA, E, with time, generation and function counts. 
End Genetic algorithms 
AS procedure Started 
 Inputs 
  The initial weights of GA, WBest-GA 
 Output 
  The best weights for FMW-ANN by GAAS method, WGAAS 
 Initialize 
  Initial weights of GAs, WBest-GA, as a start point of the algorithm 
  Set bounded, constraints limits, iterations and other   
 Terminate 
  Stop in case of  
  ‘Fitness’ E ≤ 10-14, ‘iterations’’ = 700, tolerances ‘TolFun’ ≤  
  10-20, ‘TolX’ ≤ 10-20, ‘‘TolCon’’ ≤ 10-20, ‘MaxFunEvals’ ≤ 200000 
and   default others 
 While (Terminate conditions attained) 
  Fitness calculation 
   Determined the fitness E by equations (5. 
  Fine Tuning 
   Use ‘fmincon’ routine with algorithm ‘active-set’ for 
rapid    modification of W at each cycle.  
   Go to fitness calculation step with improved W 
 End While loop 
 Accumulate 
  Store the WGAAS, E, time, iterations and function counts. 
ASA Procedure End 
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3. Performance indices 

The performance measures, used to analyzing strength and weaknesses of proposed FMW-ANN-
GASA methodology for solving the variants of NS-FLM system, incorporated in this study are 
Theil’s inequality coefficient (TIC), mean absolute deviation (MAD) and root mean square error 
(RMSE) as well as their average gauges named as Global TIC (G-TIC), Global MAD (G-MAD), 
and Global RMSE (G-RMSE). The definitions of TIC, MAD and RMSE in terms of the exact 
solution !  and approximate solution !  are given, respectively, as: 

where n represents the number of grid points. The optimal values of TIC, MAD and RMSE 
metrics are zeros in case of perfect modelling. The average values of The definitions of TIC, 
MAD and RMSE measures on the basis of sufficient large number of trials represents G-TIC, G-
MAD), and G-RMSE, respectively. The optimal values of TIC, MAD and RMSE metrics as well 
as their global variant are zeros in case of perfect modelling. 

4. Simulation and Results 

The results of detailed simulations for FMW-ANN-GAAS for solving NS-FLE equation is 
presented here for six different cases in order to evaluate the performance. The results of FMW-
ANN-GAAS on single and multiple trails for all the six cases of NS-FLE model are plotted with 
enough graphical and numerical illustrations to evaluate the accuracy and convergence. 

Problem I:  

Consider the NS-FLE differential equation (1) based system after multiplication denominator of 
second term both sides and homogeneous boundary condition by taking co = d0 = 0 as: 

By substituting ! ,	� 	and	� ,	we	have	
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The particular expressions used for functions !  and !  as: 

for positive integers p and q.  

Using the relation in (13) in equation (12), we have  

The exact solution of the NS-FLE equation (14) is written as: 

Now for particular values of p = 3 and q = 4, NS-FLE equation (14) and its solution (15) are 
given as 

The error based fitness function of equation (16) using equation (5) is given as: 
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Six cases of NS-FLE system (11) are considered by taking different values of !  as 
listed in Table 2.  

Optimization variables of FMW-ANN, to analyze all six variants of NS-FLE system (16), is 
conducted with the combination of global and local search strength of GAAS as per procedure 
listed in pseudocode given in Table 1. The whole procedure listed in Table 1 is repeated for 
hundred number of runs to create a large dataset of FMW-ANN parameters. These trained 
weights of FMW-ANN are used in first equation of set (4) to calculate the approximate solution 
for each case of the NS-FLE equation. The mathematical expressions derived by one set of 
optimized parameters, as shown in Figure 1, of FMW-ANN by GAAS technique for each case of 
NS-FLE system are given as: 

Table 2: Variants of NS-FLE system 
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The approximate solutions ! are determined by equations. (18-23) and outcomes are 
graphically illustrated in Figure 2 and numerically in Table 3 along with reference exact solution 
for each case of NS-FLE equation (16). The exact and proposed results of FMW-ANN-GAAS 
overlap for all six cases of NS-FLE equation. To analyse the matching order of the results, the 
absolute error (AE) from exact solutions are calculated for all six cases NS-FLE equation and 
outcomes are plotted in Figure 2 and tabulated in Table 4. To performance indices of TIC, MAD, 
RMSE and fitness as indicated in equations (8), (9), (10) and (17) are calculated and result are 
provided graphically in Figure 3 for each case. All these illustrations evidently show that FMW-
ANN-GAAS solutions are in a good agreement with the reference exact solutions in all six cases 
of NS-FLE equation. Near optimum values are obtained for each the performance metric that 
further established the worth of the proposed FMW-ANN-GAAS scheme. 

Index Parameteric	values

Case-1 1.2 0.7 1

Case-2 1.5 1 1

Case-3 1.8 1.3 1

Case-4 1.2 0.7 3

Case-5 1.5 1 3

Case-6 1.8 1.3 3

� l �λ�α

ˆ( )y x

(a):weights for Case 1 (b):weights for Case 2 (c):weights for Case 3

! ! !



Figure 1: Set of trained weight vectors of FMW-ANN for cases 1 to 6 of NS-FLE system 

Figure 3: The magnitude of performance indices for each case of NS-FLE system 

(d):weights for Case 4 (e):weights for Case 5 (f):weights for Case 6
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Figure 2: Comparison of results of FMW-ANN-GAAS from exact solution for all six case of the 
NS-FLE system 

Table 3: 	Results	of	FMW-ANN-GAAS	and	exact	solu>on	for	each	variant	of	NS-FLE	system	

Absol
ute 

error

Input x 
(g) Absulte error from exact solution for NS-FLE equation

y(
x)

y(
x)

y(
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Input x 
(a) Solution of NS-FLE equation 

Case 4

Input x 
(b) Solution of NS-FLE equation 

Case 5

Input x 
(c) Solution of NS-FLE equation 

Case 6
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x
Case-1 Case-2 Case-3 Case-4 Case-5 Case-6

0 0.000000000 -0.00000000
9

-0.00000000
6 0.000000066 -0.00000000

2
-0.00000005

5
-0.00000005

1

Exact 
Solution

! ( )y x
Approximate Solution ! ˆ( )y x



Table 4: Comparison of FMW-ANN-GAAS results on the basis of absolute error form exact 
solutions for	each	case	of	NS-FLE	system  

0.0
5

-0.00237500
0

-0.00237499
9

-0.00237499
9

-0.00237494
6

-0.00237500
1

-0.00237504
0

-0.00237504
7

0.1 -0.00900000
0

-0.00899999
2

-0.00899999
5

-0.00899996
2

-0.00900000
0

-0.00900003
1

-0.00900004
3

0.1
5

-0.01912500
0

-0.01912498
8

-0.01912499
3

-0.01912497
8

-0.01912500
0

-0.01912502
5

-0.01912504
0

0.2 -0.03200000
0

-0.03199998
8

-0.03199999
1

-0.03199999
0

-0.03200000
0

-0.03200002
0

-0.03200003
7

0.2
5

-0.04687500
0

-0.04687499
1

-0.04687498
9

-0.04687499
8

-0.04687500
0

-0.04687501
6

-0.04687503
4

0.3 -0.06300000
0

-0.06299999
4

-0.06299998
8

-0.06300000
3

-0.06299999
9

-0.06300001
3

-0.06300003
1

0.3
5

-0.07962500
0

-0.07962499
6

-0.07962498
7

-0.07962500
5

-0.07962499
9

-0.07962500
9

-0.07962502
8

0.4 -0.09600000
0

-0.09599999
7

-0.09599998
5

-0.09600000
6

-0.09599999
8

-0.09600000
5

-0.09600002
6

0.4
5 -0.111375000 -0.111374997 -0.111374984 -0.111375008 -0.111374998 -0.111375001 -0.11137502

3

0.5 -0.12500000
0

-0.12499999
5

-0.12499998
3

-0.12500000
9

-0.12499999
8

-0.12499999
8

-0.12500002
1

0.5
5

-0.13612500
0

-0.13612499
4

-0.13612498
2

-0.13612501
1

-0.13612499
9

-0.13612499
5

-0.13612501
8

0.6 -0.14400000
0

-0.14399999
2

-0.14399998
1

-0.14400001
4

-0.14399999
8

-0.14399999
2

-0.14400001
6

0.6
5

-0.14787500
0

-0.14787499
2

-0.14787498
0

-0.14787501
6

-0.14787499
8

-0.14787499
0

-0.14787501
3

0.7 -0.14700000
0

-0.14699999
4

-0.14699997
9

-0.14700001
8

-0.14699999
7

-0.14699998
8

-0.14700001
1

0.7
5

-0.14062500
0

-0.14062499
6

-0.14062497
8

-0.14062502
0

-0.14062499
6

-0.14062498
6

-0.14062500
8

0.8 -0.12800000
0

-0.12799999
9

-0.12799997
8

-0.12800002
1

-0.12799999
6

-0.12799998
4

-0.12800000
6

0.8
5

-0.10837500
0

-0.10837500
1

-0.10837497
7

-0.10837502
3

-0.10837499
6

-0.10837498
1

-0.10837500
3

0.9 -0.08100000
0

-0.08100000
2

-0.08099997
7

-0.08100002
6

-0.08099999
6

-0.08099997
9

-0.08100000
1

0.9
5

-0.04512500
0

-0.04512500
0

-0.04512497
6

-0.04512502
9

-0.04512499
8

-0.04512497
6

-0.04512499
9

1 0.000000000 0.000000002 0.000000024 -0.00000003
4 0.000000001 0.000000026 0.000000003



The analysis of the performance of FMW-ANN-GAAS to solve NS-FLE system (16) is 
conducted through statistics and results are presented in figures 4 to 9 and tables 5 to 10 for 100 
independent executions.  

Statistical results by means of minimum (Min), Maximum (Max), median (Med), and semi 
interquartile range (SIR), i.e., SIR is basically one half of the difference of 3rdquartile (Q3=75% 
data) and 1stquartile (Q1=25% data), are calculated for 100 executions of FMW-ANN-GAAS to 
solve all six cases of NS-FLE equation (16). These statistical observations are used for precision 
analysis of presented FMW-ANN-GAAS technique. The independent execution of the algorithm 
with parameter of FWM-ANN attaining the MIN and MAX error based fitness value is called the 
best and worst run, respectively. The results of NS-FLE equation for the best, mean and exact 

x
Case-1 Case-2 Case-3 Case-4 Case-5 Case-6

0 8.817E-09 6.010E-09 6.581E-08 1.829E-09 5.512E-08 5.136E-08

0.05 8.001E-10 5.541E-10 5.427E-08 5.155E-10 4.041E-08 4.677E-08

0.1 8.187E-09 4.536E-09 3.766E-08 4.287E-10 3.119E-08 4.315E-08

0.15 1.167E-08 7.101E-09 2.204E-08 4.212E-10 2.503E-08 3.999E-08

0.2 1.161E-08 8.966E-09 1.001E-08 1.200E-10 2.039E-08 3.701E-08

0.25 9.356E-09 1.054E-08 2.051E-09 4.334E-10 1.637E-08 3.412E-08

0.3 6.429E-09 1.201E-08 2.546E-09 1.038E-09 1.253E-08 3.127E-08

0.35 4.077E-09 1.344E-08 4.948E-09 1.496E-09 8.721E-09 2.848E-08

0.4 3.012E-09 1.484E-08 6.320E-09 1.703E-09 4.966E-09 2.576E-08

0.45 3.354E-09 1.616E-08 7.549E-09 1.674E-09 1.369E-09 2.314E-08

0.5 4.714E-09 1.737E-08 9.127E-09 1.529E-09 1.956E-09 2.059E-08

0.55 6.384E-09 1.847E-08 1.117E-08 1.441E-09 4.935E-09 1.810E-08

0.6 7.569E-09 1.944E-08 1.350E-08 1.574E-09 7.555E-09 1.563E-08

0.65 7.637E-09 2.030E-08 1.583E-08 2.018E-09 9.868E-09 1.317E-08

0.7 6.328E-09 2.107E-08 1.789E-08 2.741E-09 1.199E-08 1.070E-08

0.75 3.882E-09 2.176E-08 1.959E-08 3.567E-09 1.406E-08 8.231E-09

0.8 1.038E-09 2.240E-08 2.111E-08 4.198E-09 1.623E-08 5.795E-09

0.85 1.139E-09 2.297E-08 2.290E-08 4.301E-09 1.859E-08 3.434E-09

0.9 1.649E-09 2.348E-08 2.552E-08 3.661E-09 2.116E-08 1.184E-09

0.95 2.096E-10 2.391E-08 2.935E-08 2.429E-09 2.381E-08 9.623E-10

1 1.777E-09 2.429E-08 3.409E-08 1.477E-09 2.620E-08 3.110E-09

Absolute Error!
ˆ( ) ( )y x y x−



solution are plotted in Figure 4, while the values of AE for the best, worst and mean are tabulated 
in Figure 5.  The best AE values lie between the ranges of 10−07 to 10−10, while, the reasonably 
accuracy of mean values for each case of the NS-FLE equation. The statistics by means of Min, 
Max, Med and SIR operator are tabulated in tables 5, 6 and 7 for cases (1-2), (3-4) and (5-6) of 
NS-FLE equation (16), respectively. It is clear that the scale of Min values lies around 10−08 to 
10−09 which Max values also lies in good ranges for each case of NS-FLE model. Similarly, the 
median values also showed good results and lie around 10−04 to 10−05. Finally, the SIR values lie 
around 10−03 to 10−05 that indicates very good ranges for each case of NS-FLE model. 

Figure 4: Statistical operators based comparison of results through exact solutions for case 1 of 
NS-FLE system 

The result of statistics in terms of fitness, MAD, RMSE and TIC gauges are plotted in figures 6, 
7, 8 and 9, respectively for all six cases of NS-FLE equation (16). The histograms illustrations 
are used to find the tendency or trend of the results of fitness, MAD, RMSE and TIC, and are 
also provided for in figures 6 to 9, respectively. One may clearly understand that over 80% of 
independent implementations of FMW-ANN-GAAS obtained very good fitness, MAD, RMSE 
and TIC gauges for each case of NS-FLE system. All these results represent that over 80% of the 
runs of FMW-ANN-GAAS attained precise values of each performance measures. 
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Figure 5:  Statistical operators based comparison through magnitude of AE for all six cases of 
NS-FLE system 

Table 5: Comparison on different statistical metrics for FMW-ANN-GAAS results for cases 1 
and 2 of NS-FLE system 

Table 6: Comparison on different statistical metrics for FMW-ANN-GAAS results for cases 3 
and 4 of NS-FLE system 

Table 7: Comparison on different statistical metrics for FMW-ANN-GAAS results for cases 5 
and 6 of NS-FLE system 

x Case 1 Case 2 
Min Max Median SIR Min Max Med SIR

0. 8.187E-09 3.428E-02 1.892E-04 6.859E-04 3.332E-09 2.719E-02 1.299E-04 6.724E-04
0. 1.161E-08 4.095E-02 2.455E-04 8.612E-04 6.946E-10 1.174E-02 1.306E-05 6.821E-05
0. 6.429E-09 4.782E-02 2.808E-04 1.111E-03 9.438E-10 2.515E-02 1.248E-04 5.564E-04
0. 3.012E-09 5.554E-02 3.653E-04 1.348E-03 9.053E-09 4.364E-02 2.301E-04 1.004E-03
0. 4.714E-09 5.690E-02 3.834E-04 1.461E-03 1.706E-08 5.699E-02 2.969E-04 1.302E-03
0. 7.569E-09 5.390E-02 3.644E-04 1.390E-03 1.944E-08 6.840E-02 3.461E-04 1.548E-03
0. 6.328E-09 5.397E-02 3.646E-04 1.400E-03 2.107E-08 7.844E-02 3.974E-04 1.718E-03
0. 1.038E-09 5.888E-02 4.019E-04 1.469E-03 2.240E-08 8.904E-02 4.579E-04 1.823E-03
0. 1.649E-09 5.999E-02 4.157E-04 1.520E-03 2.348E-08 9.854E-02 5.088E-04 1.983E-03
1. 1.777E-09 5.339E-02 3.712E-04 1.437E-03 2.429E-08 1.046E-01 5.337E-04 2.266E-03

x Case 3 Case 4 
Min Max Median SIR Min Max Med SIR

0. 1.611E-08 3.357E-01 1.802E-04 8.486E-04 4.287E-10 1.003E+00 2.076E-04 4.345E-04
0. 1.001E-08 3.035E-01 1.209E-04 6.406E-04 1.200E-10 1.049E+00 2.718E-04 5.604E-04
0. 2.546E-09 2.755E-01 4.835E-05 2.403E-04 1.038E-09 1.063E+00 3.290E-04 6.130E-04
0. 3.245E-09 2.430E-01 4.773E-05 1.977E-04 1.703E-09 1.091E+00 3.658E-04 8.077E-04
0. 9.127E-09 2.043E-01 1.054E-04 4.056E-04 1.529E-09 1.106E+00 3.964E-04 9.960E-04
0. 1.350E-08 1.648E-01 1.238E-04 5.506E-04 1.574E-09 1.100E+00 4.024E-04 1.107E-03
0. 1.789E-08 1.314E-01 1.500E-04 6.515E-04 2.741E-09 1.094E+00 4.107E-04 1.068E-03
0. 2.111E-08 1.322E-01 1.972E-04 7.530E-04 4.198E-09 1.098E+00 4.256E-04 9.845E-04
0. 2.552E-08 1.568E-01 2.446E-04 8.626E-04 3.661E-09 1.093E+00 4.492E-04 1.084E-03
1. 3.409E-08 1.816E-01 2.298E-04 9.549E-04 1.477E-09 1.062E+00 4.522E-04 1.240E-03

x Case 5 Case 6 
Min Max Median SIR Min Max Med SIR

0. 3.119E-08 1.473E-01 5.108E-04 1.279E-03 4.315E-08 1.673E+00 8.469E-04 3.366E-03
0. 2.039E-08 4.150E-02 1.147E-04 4.117E-04 3.701E-08 1.453E+00 6.651E-04 2.433E-03
0. 9.803E-09 3.636E-02 2.151E-04 6.737E-04 3.127E-08 1.259E+00 3.956E-04 1.573E-03
0. 4.966E-09 6.164E-02 4.865E-04 1.086E-03 1.364E-08 1.075E+00 6.775E-05 5.810E-04
0. 1.956E-09 1.143E-01 6.772E-04 1.144E-03 4.839E-09 8.914E-01 2.936E-04 1.502E-03



0. 7.555E-09 1.760E-01 7.856E-04 1.436E-03 1.563E-08 7.030E-01 4.919E-04 2.144E-03
0. 1.199E-08 2.373E-01 9.630E-04 1.713E-03 1.070E-08 6.616E-01 7.269E-04 3.076E-03
0. 1.623E-08 2.851E-01 1.104E-03 2.011E-03 5.795E-09 7.684E-01 8.869E-04 4.037E-03
0. 2.116E-08 3.131E-01 1.247E-03 2.276E-03 1.184E-09 8.719E-01 1.087E-03 4.880E-03
1. 2.620E-08 3.327E-01 1.375E-03 2.400E-03 3.110E-09 9.672E-01 1.266E-03 5.607E-03
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Figure 6: Comparison of results through fitness gauge of GAAS method for all six cases of  
NS-FLE system 

(f): Case 4 histogram (g): Case 5 histogram (h): Case 6 histogram
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Figure 7: Comparison of results through MAD gauge of GAAS method for all six cases of  
NS-FLE system 
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Figure 8: Comparison of results through RMSE gauge of GAAS method for all six cases of  
NS-FLE system 

(c): Case 1 histogram (d): Case 2 histogram (e): Case 3 histogram
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Figure 9: Comparison of results through TIC gauge of GAAS method for all six cases of  
NS-FLE system 

To measure the convergence statistics of proposed FMW-ANN-GAAS scheme, the analysis on 
the basis of all four performance measures are tabulated in Table 8 for all six cases of NS-FLE 
system. It is clear, that most of runs obtained the levels ‘FIT ≤ 10−03’, ‘MAD ≤ 10−03’, ‘RMSE ≤ 
10−04’ and ‘TIC ≤ 10−07’, while, the reasonable independent trails of FMW-ANN-GA can 
achieved relatively stiffer levels. Although, for higher precision levels, comparatively number of 
runs decreased considerably of the present FMW-ANN-GAAS scheme to fulfil the conditions. 
The convergence analysis of FMW-ANN-GAAS is further conducted on global performance 
operators based on G-FIT, G-MAD, G-RMSE and G-TIC and these results for 100 runs are 
tabulated in Table 9. The G-FIT, G-MAD, G-RMSE and G-TIC values lie around 10−02 to 10−04, 
10−02 to 10−03, 10−02 to 10−03 and 10−06 to 10−07, respectively, together with small standard 
deviation (SD) values. The close to optimal values of these global indices further validate the 
precision of the presented FMW-ANN-GAAS scheme. 

Table 8: Convergence analysis for cases (1-6) of fractional Lane-Emden model 

Table 9: Global performance for cases (1-6) of Lane-Emden model 

(f): Case 4 histogram (g): Case 5 histogram (h): Case 6 histogram

! !!

Case
FIT≤ MAD ≤ RMSE≤ TIC ≤

10-03 10-04 10-05 10-03 10-04 10-05 10-04 10-05 10-06 10-06 10-07 10-08

1 96 88 76 81 55 31 55 31 21 99 46 26
2 92 85 70 83 54 35 53 33 23 98 43 29
3 92 84 69 85 66 41 65 39 16 97 53 27
4 97 85 71 85 53 34 51 34 21 98 40 25
5 94 78 67 76 52 30 51 29 18 96 41 25
6 86 72 58 76 47 25 46 23 13 93 37 15

Case GFIT GMAD GRMSE GTIC
Mag SD Mag SD Mag SD Mag SD

1 5.29E-04 1.85E-03 3.60E-03 8.42E-03 3.66E-03 8.54E-03 5.16E-07 1.03E-06



The computational cost of the presented FMW-ANN-GAAS algorithm are examined through 
completed iterations/cycles, average time of parameter adaptation and executed function counts 
during the process of find the decision variable of the networks. Complexity analysis for each 
case of NS-FLE model are determined and the outcomes are listed in Table 10. One may observe 
that the average generations/iterations, time and evaluations of functions are around 212.95, 
537.74 and 48888.28, for all six cases of NS-FLE system, respectively. These values are given to 
compare the efficiency of the proposed FMW-ANN-GAAS scheme. 

Table 10: Complexity analysis for cases (1-6) of Lane-Emden model 

5. Conclusions 

A new stochastic computational solver FMW-ANN-GASA based on fractional Mayer wavelet 
artificial neural network optimized with integrated strength of genetic algorithm aid with active-
set method is presented for reliable and effective numerical treatment for nonlinear singular 
fractional Lane-Emden differential equation. The proposed FMW-ANN-GASA methodology is 
viably implemented on fractional Lane-Emden system for six different scenarios to prove its 
accuracy, convergence, stability and robustness. Comparison of the proposed numerical solutions 
of FMW-ANN-GASA with exact solutions shows the matching of order 7 to 10 decimal places 
of accuracy which verify its correctness and efficacy. Statistical measures of the present results 
indicate that more than 75% runs of the algorithm give precise results consistently. Consequently, 
the present technique is not only effective but one can implement easily too. The proposed 
FMW-ANN-GAAS is a fast convergent procedure that can implemented to solve the linear/
nonlinear, singular/nonsingular systems governed with differential equation. 

2 1.11E-03 3.89E-03 4.24E-03 9.89E-03 4.81E-03 1.13E-02 6.89E-07 1.38E-06
3 6.06E-03 3.56E-02 5.61E-03 2.26E-02 6.39E-03 2.55E-02 7.75E-07 2.96E-06
4 5.07E-02 2.87E-01 1.66E-02 1.10E-01 1.70E-02 1.11E-01 2.09E-06 1.33E-05
5 2.98E-02 2.84E-01 5.57E-03 1.87E-02 6.43E-03 2.21E-02 9.31E-07 2.64E-06
6 6.48E-02 4.39E-01 3.24E-02 1.18E-01 3.60E-02 1.34E-01 4.51E-06 1.57E-05

Case Generation/Iteration Time of execution Function Counts
Mean SD Mean SD Mean SD

1 170.6794 155.1256 492.01 279.9201 46055.45 19278.42
2 174.8195 162.6908 498.3 280.3729 46249.79 18818.14
3 189.8958 159.454 570.01 262.5481 50665.97 17410.45
4 188.4489 161.5488 533.53 270.1939 48694.47 18269.01
5 325.7306 1421.96 503.62 274.4711 46678.66 18511.97
6 228.1427 181.5433 628.94 223.0223 54985.35 15166.35



In future, one may exploit the FMW-ANN-GASA scheme for solution of fractional order 
systems represented with nonlinear Riccati equation, Baglay-Torvik equation, Van-der Pol 
system and Painleve eqautions.  
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