
Neuro-Swarm computational heuristic for 

solving a nonlinear second order coupled 

Emden-Fowler model 

Zulqurnain Sabir1,a, Muhammad Asif Zahoor Raja2,b, Dumitru Baleanu3,4,c, Juan L.G. Guirao5,d 

1Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan  
aEmail: zulqurnain_maths@hu.edu.pk  

2Future Technology Research Center, National Yunlin University of Science and Technology, 

123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C. 
bEmail: rajamaz@yuntech.edu.tw 

3Department of Mathematics, Cankaya University, Ankara, Turkey d Institute of Space Sciences, 

Magurele, Romania 
cEmail: dumitru@cankaya.edu.tr  

4Institute of Space Sciences, Magurele, Romania 

5Department of Applied Mathematics and Statistics, Technical University of Cartagena, Hospital 

de Marina 30203-Cartagena, Spain  

dEmail: juan.garcia@upct.es  

 

Abstract: The aim of the current study is to present the numerical solutions of a nonlinear second 

order coupled Emden-Fowler equation by developing a neuro-swarming based computing 

intelligent solver. The feedforward artificial neural networks (ANNs) are used for modelling and 

optimization is carried out by the local/global search competences of particle swarm optimization 

(PSO) aided with capability of interior-point method (IPM), i.e., ANNs-PSO-IPM. In ANNs-PSO-

IPM, a mean square error based objective function is designed for nonlinear second order coupled 

Emden-Fowler (EF) equations and then optimized using the combination of PSO-IPM. The 

inspiration to present the ANNs-PSO-IPM comes with a motive to depict a viable, detailed and 

consistent framework to tackle with such stiff/nonlinear second order coupled EF system. The 

ANNs-PSO-IP scheme is verified for different examples of the second order nonlinear-coupled EF 

equations. The achieved numerical outcomes for single as well as multiple trials of ANNs-PSO-

IPM are incorporated to validate the reliability, viability and accuracy. 

Keywords: Coupled Emden-Fowler model; Interior-point algorithm; Neural networks; Numerical 

computing. 
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ANNs Artificial neural networks 

PSO particle swarm optimization 

IPM interior-point method 

RMSE Root Mean Square Error  

VAF Variance Account For 

SI Semi Interquartile 

EVAF Error in VAF 

PSO-IPM PSO aided with IPM 

ANNs-PSO-IPM ANNs optimized with PSO and IPM 

MIN  Minimum 

SD Standard deviation 

1. Introduction 

The historical Emden-Fowler (EF) system is considered very important for the research 

community because of singularity at the origin and has various applications in wide-ranging fields 

of applied science and engineering. Some well-known applications are catalytic diffusion reactions 

using the error estimate models [1], stellar configuration [2], density profile of gaseous star [3], 

spherical annulus [4], isotropic continuous media [5], extrinsic thermionic maps [6], the theory of 

electromagnetic [7] and morphogenesis [8]. Due to the specialty of the singular point and extensive 

applications, the researcher has always shown keen interest to solve these models all the time. 

These models are not easy to solve due of this singular model, nonlinearity and stiff nature and 

only a few techniques are available in the literature to solve these models. Few of them are 

Legendre spectral wavelets scheme [9], Adomian decomposition scheme [10], Haar 

quasilinearization wavelet scheme [11-12], an analytic algorithm approach [13], rational Legendre 

approximation scheme [14], modified variational iteration scheme [15], differential transformation 

scheme [16], fourth-order B-spline collocation scheme [17], Chebyshev operational matrix scheme 

[18] and variation of parameters scheme with an auxiliary parameter [19]. Beside these the 

numerical methodologies introduced in [20-25] can be exploited for EF equations-based systems. 

All these mentioned schemes have their specific merits/advantages and demerits/imperfections, 

whereas, soft computing stochastic solver is used to manipulate the artificial neural networks 

(ANNs) strength optimized by global/local search proficiencies of particle swarm optimization 

(PSO) and interior-point method (IPM), i.e., ANNs-PSO-IPM, have not been implemented for the 

nonlinear coupled EF model of second kind. The researchers have been generally practiced the 

numerical computing meta-heuristic schemes along with the neural network strengths for solving 

the various mathematical linear/nonlinear models [26-32]. Few recent applications of the 

stochastic solvers are financial market forecasting [33], food chain model [34], nonlinear smoking 

models [35], nonlinear fractional Lane–Emden systems [36], nonlinear second-order Lane–Emden 

pantograph delay differential systems [37], peristaltic motion of a third-grade fluid involving 

planar channel [38], nonlinear predator-prey system [39], elliptic partial differential model [40], 

mathematical form of the Leptospirosis system [41], HIV mathematical models [42-43], nonlinear 

multiple singularities based systems [44], singular Thomas-Fermi equation [45], heartbeat 

dynamics [46], a corneal model for eye surgery [47-48] and heat conduction model of the human 

head [49]. These proposed stochastic solvers verified the values of the exactness, convergence, 

and accurateness of the ANNs-PSO-IPM. 



Keeping in view all the consequences of above proposals, authors are interested to exploit the 

numerical stochastic solvers for consistent, stable, and efficient scheme for nonlinear second order 

coupled EF system. The literature form of the coupled EF model of second kind is written as [50]: 
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Where 1G  and 2G  are the nonlinear functions,   and   are the constants, while 1F  and 2F  are 

designated as a source functions. The aim of this current study is to solve the model given in 

equation (1) through intelligent computing schemes based on ANN-PSO-IP scheme. Some 

inventive inspiration of the current study is presented as: 

• A neuro-swarm novel intelligent computing ANNs-PSO-IPM is designed and presented to 

solve second order nonlinear coupled EF model. 

• The overlapping results of the proposed ANNs-PSO-IPM with the exact solutions for four 

different examples of the nonlinear-coupled EF based model of second kind establish the 

consistency, exactness and convergence. 

• Ratification of the precise performance is authenticated via statistical 

calculations/observations on multiple runs of ANN-PSO-IP scheme in terms of root mean 

square error, Variance Account For, Semi Interquartile Range and Theil’s inequality 

coefficient metrics. 

• Beside essentially precise continuous results on whole interval, ease in the concept, 

stability, the smooth implementable practice and extendibility are well-intentioned 

declarations for the presented ANNs-PSO-IPM. 

The remaining forms of the present work are shown as; Sec 2 presents the detailed methodology 

of the neural networks using the optimization process ANNs-PSO-IP scheme. Sec 3 presents the 

performance measures. Sec 4 indicates the numerical measures of the ANNs-PSO-IPM together 

with the statistical measures. Finally, some concluding remarks along with future work plans are 

described. 

2. Methodology 

This section presents the design of ANNs-PSO-IPM for second order nonlinear coupled EF model 

in two stages as given below: 

Stage 1: A mean square error based objective/fitness function is constructed for nonlinear coupled 

EF model  

Stage 2: The training/learning of the networks is presented with the help of hybrid PSO-IPM. 

2.1 ANNs modeling 

The neural networks are extensively applied to solve the diverse applications arising in sundry 

domains of engineering and applied sciences [51-54]. The proposed results are indicated as ˆ ( )U   
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where ,  wand a  are the unknown weight vectors, while m and n are the number of neurons and 

the order of derivative, respectively. 

[ , ]U V=W W W , for [ , , ]U U U U=W w   and [ , , ]V V V V=W w  . The weight vector components are 
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 is as an activation function and the simplified form of the 

network (2) using the ˆ ( )U   and ˆ ( )V   along with their derivatives are shown as: 
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The mean square error based objective/fitness formulation is formulated as follows: 
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where 1 11, , ( )mhN mh F F=  =  =  and 2 2( )F F = . The objective functions 1FitE −  and 2FitE −  

are linked with coupled differential systems and 3FitE −  is used for the initial conditions. 

2.2 Optimization: PSO-IPM 

The optimization to solve the second order nonlinear-coupled EF system is ratified by the hybrid-

computing of PSO-IPM. 

PSO is a well-organized search algorithm used as a global search methodology like genetic 

algorithms (GAs). The PSO algorithm introduced by Eberhart and Kennedy [55-56] and works as 

an easy procedure that needs minor memory. In search space, an applicant single solution of 

decision variables by applying optimization is known as a particle and these particles set formulate 

a swarm. The PSO operates via local 
1

LB

−
P  and global 

1

GB

−
P  best particle positions in a swarm. The 

position Xi and velocity Vi are mathematical expressed as follows: 
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here   is stand for iteration/flight index,  is for inertia weight vector varying between [0. 1], 1  

and 2 are the cognitive/social constant accelerations, while, 1  and 2  are the vectors lie between 

[0, 1]. Some recent applications of PSO are parameter estimation [57], robotics [58-59], nonlinear 

electric circuits [60], systems of equations based physical models [61], and optimization of 

permanent magnets synchronous motor [62]. 

The convergence performance of PSO quickly achieved by using the combination with local search 

procedure by taking the global best particle of PSO as an initial weight. Consequently, an operative 

and quick local search approach named as interior-point method (IPM) is oppressed for rapid 

refinement of the outcomes obtained via PSO scheme. The integrated heuristics of PSO-IPM is 

exploited to train the networks, while the essential parameter settings of importance elements for 



PSO-IPM is given in Table 1. Few recently IP scheme applications are power flow security 

constraint optimization [63], image processing [64], multistage nonlinear nonconvex problems 

[65] and nonlinear benchmark models [66]. The PSO-IP scheme is used to train the networks as 

per process and parameter settings provided in the Table 1. 

Table 1: Comprehensive pseudocode of PSO-IP scheme for solving the second order nonlinear 

coupled EF model 

PSO algorithm start 

Step 1: Initialization: Create the prime swarm arbitrarily and initialize the 

parameters of PSO routine and optimoptions tool. 

Step-2: Fitness Assessment: Determine/Analyze the fitness of each particle in 

the swarm using equations (4) to (7). 

Step-3: Rank of particle: Ranking is associated for each particle of swarm 

via minimum criteria of the fitness/objrctive function. 

Step-4: Stoppage Criteria: Terminate, if one of below standard meets  

• Fitness level 

• Selected flights 

When the above standard accomplished, then go to Step 5 

Step-5: Modification: Update the position and velocity by using expressions 

(8) and (9), respectively. 

Step-6: Repetition: Repeat steps 2 to 6 till the whole flights are completed. 

Step-7: Storage: The parameters of global best particle are store along with 

its fitness. 

PSO algorithm stop  

Start of PSO-IP scheme 

Inputs:  ‘global best particle’ of PSO 

Output: WPSOIP are the ‘PSOIP’s trained weights 

Initialization: Use ‘global best particle’ as a start point of IPM. 

Termination: Stop the execution, when one of the below conditions meet 

[Fitness = FitE = 10-20], [TolX = 10-21], [Generation =  1000], [TolFun = 

TolCon = 10-22] and [MaxFunEvals = 265000] 

While [Terminate] 

Fitness Evaluation: The set (4) is applied for the ‘fitness value’ 

Adjustments: Invoke the ‘fmincon’ routine for the IP scheme to regulate the 

‘weight vector’ values. 

Store the ‘fitness values’ using the ‘basic form’ of the ‘weight vector’ 

Store: WPSO-IP scheme values, best weights, fitness, function count, 

generations and time for the current run. 

PSO-IP scheme End 

3. Performance indices/metrics 

The performances is measured using RMSE, VAF, TIC indices along their globals, i.e., mean 

values. The mathematical forms of these statistical operatives are given as: 
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4. Results and discussions 

The detail for presenting the solving the four examples of second order coupled EF model is 

presented in this section. 

Problem I: Consider the second order nonlinear-coupled EF model is given as: 
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The exact solutions of the equation (13) are [
2 2

,e e − ], whereas the fitness function becomes as: 
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here N =20, 25 and 30 for input span [0, 1], [0, 1.25] and [0, 1.5], respectively. 

Problem II: Consider the second order nonlinear-coupled EF system is written as: 
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The exact solutions of equation (15) are [
2 22 2,e e  +  − ] and the error function is given as: 
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here N =20, 25 and 30 for input span [0, 1], [0, 1.25] and [0, 1.5], respectively. 

Problem III: Consider the second order nonlinear-coupled EF model is given as: 
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The exact solutions of the equation (17) are [
2 21 , 1+ − ] and the fitness/objective function is 

given as follows: 
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here N =20, 25 and 30 for input span [0, 1], [0, 1.25] and [0, 1.5], respectively. 

Problem IV: Consider the second order nonlinear-coupled EF model is given as: 

2
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2
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 (19) 

The exact solutions of the equation (17) are [
2

2

1
1 ,

1
+

+
] and the fitness/objective function 

is given as follows: 
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  (20) 

here N =20, 25 and 30 for input span [0, 1], [0, 1.25] and [0, 1.5], respectively. 

To calculate/determined the proposed numerical outcomes for the Problems I to IV based on the 

second order nonlinear-coupled EF model using the proposed PSO-IPM executed for 50 multiple 

runs to attain the adjustable weights. The numerical values of the weights are presented in Fig. 1 

for Û  and V̂ .. These parameters are applied to get the estimated results for all four variants based 

on the second order nonlinear-coupled EF model and the mathematical representations becomes 

as: 

(1.425 1.998) ( 4.376 5.970) (1.5452 3.00   7.33) ( 11.211)87

1.6758 3.8309 2.3451 6.8234ˆ ... ,
1 1 1 1

P IU
e e e e −− − + − − + − − − +

= − + + −
+ + + +

 (21) 

(0.578 0.192) (6.155 9.503)   2.220( 2.206 1.560) ( 1.921)

6.0315 9.0343 1.297 4.6126ˆ ... ,
1 1 1 1
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e e e e

− − + − − − −−− − − 
= + + + +

+ + + +
 (22) 
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1 1 1 1

P IIIU
e e e e
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−
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+ + + +
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The optimization is performed for all the problems of the nonlinear-coupled EF system with 

ANNs-PSO-IPM for 50 independent runs. A set of the best weights along with proposed and exact 

outcomes are shown in Fig.1. It is stated that all the problems of the nonlinear-coupled EF system 

of second kind, the exact/reference solution and ANNs-PSO-IPM results overlapped consistently 

for ˆ ( )U   and ˆ ( )V  . This overlapping of the outcomes depicts the correctness/exactness of the 



proposed ANNs-PSO-IP scheme. Fig 2 shows the absolute error (AE), comparison of the proposed 

results and exact solutions as well as analysis on different performance metrics. The approximate 

solutions for N = 25 and N = 30 are plotted in Fig. 3 and 4 along with the reference exact values. 

One may see that results are consistently overlapping for small as well as large interval. The AE 

plots for ˆ ( )U  and ˆ ( )V  are drawn in Figs 2(a) and 2(b) for N = 20, while the performance measures 

for ˆ ( )U  and ˆ ( )V   are provided in Figs 2(c) to 2(d) for N = 20. It is observed that the AE values 

of ˆ ( )U  lie around 10-05 to 10-06, 10-04 to 10-05, 10-06 to 10-08 and 10-06 to 10-07 for Problem I, II, III 

and IV in case of N = 20, 25 and 30. While the AE values of ˆ ( )V   lie around 10-05 to 10-06, 10-04 

to 10-05, 10-06 to 10-09 and 10-06 to 10-07 for Problems I, II, III and IV for N = 20. The performance 

measures of ˆ ( )U   and ˆ ( )V   based on FIT, RMSE, TIIC and EVAF are plotted in Fig. 2(c) and 

2(d). It is seen that the FIT for ˆ ( )U  and ˆ ( )V   lie close to 10-08 to 10-10
, for problems I, III and IV, 

and similarly the FIT for Problem II lie around 10-06 to 10-08. The RMSE and TIC for ˆ ( )U  and 

ˆ ( )V   lie around to 10-04 to 10-06
, for all the problems. The TIC values lie around 10-06 to 10-08 for 

both indexes of all the Problems. The values of the EVAF for both indices of all the problems lie 

around 10-10 to 10-12. The convergence measures for the Problems I to IV based on the second 

order nonlinear-coupled EF model using the fitness values, boxplots and histograms with 10 

neurons are plotted in Fig 5. It is seen that the fitness lie around 10-04 to 10-08 for the Problems I to 

IV. 

For more satisfaction, accuracy and precision examination of the ANNs-PSO-IP scheme, statistical 

measures are made based on minimum (MIN), mean, standard deviation (SD), median and semi 

interquartile range (S-IR). S-IR range is 0.5 times of the difference of the third quartile i.e., 

Q3=75% data and first quartile i.e., Q1=25% data, is calculated for 50 runs of ANNs-PSO-IP 

scheme to solve four different examples of the nonlinear-coupled EF system of second kind. These 

statistical results for Problems I to IV are provided in Tables 2 as well as 3 for Û  and V̂ , 

respectively. It is perceived that both ˆ ( )U   and ˆ ( )V   for Problems I to IV lie in the good range. 

The global performance, i.e., G-FIT, G-EVAF, G-RMSE and G-TIC of ˆ ( )U  and ˆ ( )V   for 

Problems I to IV are provided in Table 4. In the said Table, the presentations of the global 

performance for all problems based on second order nonlinear-coupled EF model for 50 

independent executions are provided. The magnitude as well as median values of each Problems 

based on the second order nonlinear-coupled EF model using the indexes ˆ ( )U   and ˆ ( )V   proven 

good. The time complexity of the proposed scheme ANNs-PSO-IPM for all four problems in terms 

of time consume for learning of weights of neural network is around 50±25 for N = 20, while in 

case of N =25 and 30 time consumed are around 55±25 and 60±20, respectively. 

 

 

 

 

 

 

 

 



 

(a): Results of ˆ ( )U   for Problems I to IV 

    
(b): P-I weights for ˆ ( )U   (c): P-II weights for ˆ ( )U   (d): P-III weights for ˆ ( )U   (e): P-IV weights for ˆ ( )U   

 

(f): Results of ˆ ( )V   for Problems I to IV 

    

(g): P-I weights for ˆ ( )V   (h): P-II weights for ˆ ( )V   (i): P-III weights for ˆ ( )V   (j): P-IV weights for ˆ ( )V   

Fig 1: Best weight sets and results comparison for all the Problems of second order nonlinear-coupled EF model 



  
(a) AE of Problems I-IV for ˆ ( )U   (b) AE of Problems I-IV for ˆ ( )V   

  
(c) Performance indices of Problem I-IV for ˆ ( )U   (d) Performance indices of Problem I-IV for ˆ ( )V   

Fig 2: Absolute error and performance measures for all Problems of second order nonlinear-

coupled EF model. 
 



 
(a) results for U(Ψ) 

 
(a) results for V(Ψ) 

Fig 3: Comparison of proposed solutions for all Problems of second order nonlinear-coupled EF 

model in case of input interval [0, 1.25]. 

 



 
(a) results for U(Ψ) 

 
(b) results for V(Ψ) 

Fig 4: Comparison of proposed solutions for all Problems of second order nonlinear-coupled EF 

model in case of input interval [0, 1.5]. 

 

 

 



 
(a) Convergence analysis of second order nonlinear-coupled EF model based on the independent trials 

ANNs-PSO-IP scheme along x-axis and Fitness values on y-axis  

    
(b): Histogram for 

Problem I 

(c): Histogram for  

Problem II 

(d): Histogram for 

Problem III 

(e): Histogram for 

Problem IV 

    

(f): Boxplot for Problem  

I 

(g): Boxplot for Problem 

II 

(h): Boxplot for Problem 

III 

(i): Boxplot for Problem 

IV 

Fig 5: Convergence indices for all the Problems of second order nonlinear-coupled EF model 

using the Fitness, boxplots and boxplots for 10 neurons 

 

 

 

 



Table 2: Statistics on ˆ ( )U   for all the Problems of second order nonlinear-coupled EF model 

using the ANNs-PSO-IP approach. 

 Mode 
Solutions of ˆ ( )U  for Problems I to IV between [0,1]  

0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0 

P
ro

b
lem

 I 

Min 3.5×10-07 3.0×10-06 4.0×10-06 4.6×10-06 6.1×10-06 7.0×10-06 7.9×10-06 9.8×10-06 1.2×10-05 1.5×10-05 1.5×10-05 

Mean 4.9×10-05 5.7×10-03 8.5×10-03 2.2×10-02 2.4×10-02 2.6×10-02 1.9×10-02 4.7×10-02 3.8×10-02 3.1×10-02 4.9×10-02 

SD 2.7×10-04 1.8×10-02 2.4×10-02 5.0×10-02 6.9×10-02 7.9×10-02 6.8×10-02 5.5×10-02 6.5×10-02 7.8×10-01 9.4×10-01 

Median 3.4×10-07 7.5×10-04 2.4×10-03 2.5×10-03 5.9×10-05 3.5×10-03 9.7×10-04 8.1×10-05 3.2×10-06 8.2×10-05 1.9×10-05 

SIR 1.7×10-05 8.3×10-05 6.4×10-05 3.5×10-04 2.4×10-06 2.6×10-05 2.4×10-04 3.5×10-04 7.4×10-05 1.9×10-05 6.5×10-04 

P
ro

b
lem

  II 

Min 7.5×10-07 1.3×10-06 4.5×10-05 9.7×10-05 2.0×10-07 1.5×10-07 3.3×10-07 1.0×10-05 2.6×10-06 7.8×10-06 2.6×10-07 

Mean 3.9×10-05 9.7×10-05 1.5×10-03 1.5×10-04 3.9×10-04 2.9×10-05 2.0×10-04 2.3×10-04 2.6×10-05 3.1×10-05 3.7×10-05 

SD 6.6×10-05 1.1×10-04 1.5×10-04 1.5×10-04 1.5×10-04 1.6×10-04 1.9×10-06 2.1×10-03 2.3×10-03 9.2×10-04 3.3×10-05 

Median 9.6×10-06 7.2×10-05 4.5×10-05 1.1×10-04 1.0×10-04 1.1×10-04 1.4×10-04 1.7×10-04 2.1×10-04 3.5×10-05 3.5×10-04 

SIR 1.8×10-05 4.7×10-05 2.3×10-06 8.7×10-05 7.2×10-05 7.9×10-06 9.8×10-06 9.5×10-05 1.0×10-02 9.2×10-04 1.9×10-05 

P
ro

b
lem

 III 

Min 1.1×10-08 7.6×10-07 7.8×10-07 6.1×10-07 5.7×10-08 2.6×10-08 2.1×10-07 3.3×10-07 5.6×10-07 5.6×10-07 4.4×10-07 

Mean 4.4×10-06 6.9×10-06 3.4×10-06 4.2×10-04 2.9×10-07 4.5×10-06 3.0×10-05 4.3×10-06 3.4×10-04 3.7×10-06 3.2×10-06 

SD 6.5×10-05 6.1×10-05 3.8×10-05 3.2×10-05 3.4×10-05 6.1×10-04 4.3×10-04 3.6×10-05 4.2×10-03 4.4×10-05 5.2×10-04 

Median 9.6×10-06 3.9×10-04 8.1×10-06 7.2×10-06 7.3×10-06 8.0×10-05 8.7×10-05 6.3×10-07 3.6×10-05 6.2×10-04 1.6×10-05 

SIR 2.9×10-06 8.4×10-06 9.5×10-04 9.2×10-07 4.3×10-06 7.3×10-06 4.5×10-07 2.1×10-05 9.1×10-06 3.3×10-07 1.7×10-06 

P
ro

b
lem

 IV
 

Min 3.3×10-08 4.4×10-07 6.8×10-07 1.5×10-05 9.2×10-07 3.4×10-07 2.2×10-06 5.4×10-06 5.4×10-07 6.4×10-06 2.2×10-06 

Mean 6.5×10-04 1.0×10-02 2.7×10-05 5.1×10-03 3.4×10-03 2.7×10-04 1.2×10-04 6.1×10-05 2.4×10-03 3.6×10-04 3.6×10-04 

SD 7.4×10-03 9.3×10-03 4.2×10-03 3.5×10-03 2.6×10-02 2.6×10-03 3.4×10-03 5.2×10-03 4.6×10-02 2.5×10-03 2.6×10-03 

Median 4.9×10-06 2.5×10-05 6.2×10-05 5.8×10-05 4.3×10-05 5.4×10-05 5.9×10-06 6.7×10-04 6.0×10-05 8.4×10-04 6.8×10-05 

SIR 8.1×10-06 4.9×10-06 9.4×10-06 7.2×10-04 6.6×10-06 4.5×10-06 7.8×10-05 7.4×10-05 7.3×10-06 6.2×10-06 5.4×10-06 

 

Table 3: Statistics on ˆ ( )V   for all Problems of second order nonlinear-coupled EF model using 

the ANNs-PSO-IP approach. 

 Mode 
Solutions of ˆ ( )V  for Problems I to IV between [0,1] with 0.1 step size  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P
ro

b
lem

 I 

Min 2.7×10-08 8.3×10-07 7.0×10-07 4.6×10-07 2.3×10-07 6.2×10-07 2.3×10-07 2.2×10-07 2.2×10-06 6.0×10-07 4.8×10-07 

Mean 3.2×10-06 7.3×10-05 4.2×10-04 2.2×10-03 3.2×10-03 3.5×10-03 5.2×10-03 6.7×10-03 8.8×10-03 2.2×10-03 2.3×10-04 

SD 8.4×10-04 2.4×10-04 7.4×10-04 3.6×10-03 5.3×10-03 8.7×10-03 2.3×10-03 2.7×10-03 3.3×10-03 3.7×10-03 3.2×10-03 

Median 7.3×10-05 2.7×10-05 3.7×10-05 3.6×10-05 2.7×10-05 2.4×10-05 2.5×10-05 2.8×10-05 2.4×10-05 2.4×10-05 2.5×10-06 

SIR 2.0×10-06 2.3×10-05 3.4×10-05 3.5×10-05 2.7×10-05 2.4×10-05 2.6×10-05 2.5×10-05 2.3×10-05 2.5×10-05 2.2×10-05 

P
ro

b
lem

 II 

Min 2.0×10-07 4.0×10-06 3.3×10-06 3.3×10-07 3.2×10-06 5.4×10-06 2.7×10-06 7.5×10-07 2.7×10-05 3.7×10-07 2.3×10-05 

Mean 3.0×10-05 2.0×10-04 2.8×10-04 3.0×10-04 2.7×10-04 3.0×10-04 3.3×10-04 3.6×10-04 3.7×10-04 3.4×10-04 3.7×10-05 

SD 3.7×10-05 7.7×10-05 2.4×10-04 2.5×10-04 2.4×10-04 2.5×10-04 2.7×10-04 2.7×10-04 3.2×10-04 3.6×10-04 3.0×10-04 

Median 3.2×10-05 2.0×10-04 2.5×10-04 2.5×10-04 2.6×10-04 2.8×10-04 3.2×10-04 3.6×10-04 3.7×10-04 3.5×10-04 3.7×10-04 

SIR 2.7×10-05 4.8×10-05 2.0×10-04 2.3×10-04 2.3×10-04 2.3×10-04 2.3×10-04 2.6×10-04 2.7×10-04 2.7×10-04 3.3×10-04 

P
ro

b
lem

 III 

Min 2.4×10-08 3.0×10-07 2.2×10-06 2.4×10-07 6.7×10-07 3.8×10-07 3.3×10-07 3.5×10-07 8.4×10-07 3.3×10-08 2.8×10-07 

Mean 7.7×10-06 2.6×10-05 3.5×10-05 3.4×10-05 3.0×10-05 2.8×10-05 2.8×10-05 2.8×10-05 2.6×10-05 2.4×10-05 2.4×10-06 

SD 2.3×10-05 2.7×10-05 3.8×10-05 3.7×10-05 3.4×10-05 3.0×10-05 2.7×10-05 4.7×10-05 2.7×10-05 2.7×10-05 2.6×10-05 

Median 3.8×10-06 8.8×10-06 2.5×10-05 2.3×10-05 2.2×10-05 2.2×10-05 2.2×10-05 2.0×10-05 7.6×10-06 8.2×10-06 7.3×10-06 

SIR 4.8×10-06 7.4×10-06 2.4×10-05 2.3×10-05 2.3×10-05 2.2×10-05 2.2×10-05 7.0×10-06 8.0×10-06 7.5×10-06 6.7×10-06 

P
ro

b
lem

 IV
 

Min 7.2×10-08 3.7×10-08 2.8×10-07 4.5×10-07 3.3×10-07 2.2×10-06 6.0×10-07 3.4×10-08 2.3×10-07 3.3×10-07 3.3×10-07 

Median 7.4×10-04 7.3×10-04 6.3×10-04 4.7×10-04 3.7×10-04 4.5×10-05 3.2×10-04 4.3×10-04 6.3×10-04 7.7×10-04 7.4×10-04 

SD 5.2×10-03 4.7×10-03 4.3×10-03 3.3×10-03 2.8×10-03 3.3×10-04 2.4×10-03 3.7×10-03 4.3×10-03 5.6×10-03 6.6×10-03 

Median 4.8×10-06 2.2×10-05 2.7×10-05 2.4×10-05 8.2×10-06 8.3×10-06 8.3×10-06 7.7×10-06 3.6×10-06 3.8×10-06 4.4×10-06 

SIR 6.7×10-06 2.5×10-05 2.6×10-05 2.2×10-05 7.6×10-06 7.3×10-06 6.5×10-06 5.0×10-06 4.5×10-06 4.7×10-06 4.0×10-07 

 

 

 



Table 4: Results for global performance on both ˆ ( )U   and ˆ ( )V   in case of Problems I to IV 

Index Problem 
G.FIT G.RMSE G.TIC G.EVAF 

MAG  Median MAG Median MAG Median MAG Median 

ˆ ( )U   1 2.95×10-06 4.71×10-07 2.06×10-01 2.28×10-04 2.77×10-02 4.16×10-05 2.71×10-01 4.20×10-08 

 2 4.47×10-06 3.29×10-06 2.15×10-04 1.69×10-04 3.95×10-02 4.27×10-05 1.82×10-08 8.89×10-09 

 3 3.73×10-07 6.71×10-08 2.26×10-05 1.01×10-05 5.41×10-02 5.44×10-05 1.80×10-09 1.43×10-10 

 4 4.42×10-05 9.90×10-08 2.62×10-02 4.77×10-05 5.87×10-02 6.05×10-05 2.94×10-01 2.22×10-08 

ˆ ( )V   1 6.6×10-06 3.1×10-07 6.3×10-05 4.2×10-06 1.9×10-05 9.1×10-07 3.6×10-08 5.8×10-09 

 2 3.5×10-04 4.8×10-06 5.1×10-02 2.4×10-02 1.2×10-05 7.3×10-06 3.3×10-01 2.1×10-03 

 3 1.7×10-06 3.1×10-07 1.8×10-05 8.1×10-06 1.7×10-05 1.1×10-05 3.2×10-09 9.5×10-11 

 4 2.3×10-05 2.1×10-07 5.8×10-02 3.5×10-06 5.8×10-03 7.5×10-06 3.5×10-02 2.5×10-03 

4. Conclusion 

In this investigation, a reliable, stable, consistent and precise numerical ANNs-PSO-IPM is 

presented for solving the nonlinear-coupled EF system by using the ANNs strength. The objective 

function is optimized of these networks using the global as well as local search competences of 

PSO-IPM. The suggested ANNs-PSO-IPM is viably executed to solve four different examples of 

the nonlinear-coupled EF system. The detailed, precise and particular presentation is obtained for 

ANNs-PSO-IPM in terms of AE with steadfast precision is measured around 4 to 7 decimals of 

accurateness of the present reference solutions for all four problems of the nonlinear-coupled EF 

system of second kind. Furthermore, the statistical clarifications achieved good measures using 

the Min, standard deviation, Mean, S-IR and Median to check the convergence, robustness and 

accuracy of the ANNs-PSO-IPM for solving the second order nonlinear-coupled EF model based 

problems I to IV. 

5. Future research directions 

In the future, one can exploit/explore the knacks of ANNs-PSO-IPM to solve the singular higher 

order models [67-69], fractional order models [70-75] and many other applications of utmost 

importance [76-79]. 
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