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Abstract Vibro-impact phenomena are prevalent in practical engineering, making research on their
stochastic dynamic characteristic of great practical significance. However, the research on stochastic
stability and bifurcation of vibro-impact systems is still limited, especially the moment stability. In this
paper, based on the pth moment Lyapunov exponent, the stochastic stability of a vibro-impact system
driven by non-Gaussian colored noise is investigated. Firstly, the smooth stochastic dynamic system is
obtained making use of a non-smooth transformation and the non-Gaussian colored noise is simplified
to an Ornstein-Uhlenbeck process by utilizing the path-integral method. Thereafter, through applying
the L.Arnold perturbation method, the second-order approximate solution of the pth moment Lyapunov
exponent is calculated, which agree well with the simulation results given by the Monte Carlo method.
Finally, the effects of the noise parameters, natural frequency, coefficient of restitution, and damping
coefficient on the stochastic stability of the vibro-impact are studied. Due to the existence of impact
factor, the natural frequency has a direct and significant effect on the stochastic stability of the system.

Keywords Stochastic stability; Moment Lyapunov exponent; Largest Lyapunov exponent;
Perturbation method; Monte Carlo simulation; Vibro-impact system.

1. Introduction

The vibro-impact system, as a typical example of a non-smooth system, is widely

prevalent in our daily lives and engineering fields. It can be observed in various applications

such as woodpecker toys, car braking systems, vibrating pile drivers, and impact shock

absorbers. The presence of vibro-impact significantly influences the dynamic performance,

reliability, and lifespan of structures. Due to the universality of vibro-impact in practical

engineering field and its importance in aerospace, machinery manufacturing, transportation

and energy fields, the study of dynamic characteristics of the vibro-impact systems has
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become increasingly urgent and attracted the attention of many scholars. Furthermore, it is

important to note that the loads acting on structures often exhibit random characteristics.

These include forces arising from strong winds, waves, atmospheric turbulence, explosions,

and earthquakes. Such random forces can induce the system to exhibit complex dynamic

behaviors that are fundamentally different from those observed in deterministic systems.

Therefore, clarifying the dynamic characteristics of vibro-impact systems under random

excitation is more conducive to engineering applications, which also has attracted the research

interest of many scholars [1-6].

In the previous decades, there have been significant advancements in the research on the

dynamic characteristics of vibro-impact systems under random perturbations [7-9]. Notably,

Nayak [10] conducted pioneering work in 1972, exploring the dynamic characteristics of

random vibro-impact systems. For a vibro-impact system driven by Gaussian white noise,

Jing [11] obtained the exact stationary solution based on the Hertz contact theory. Huang [12]

employed the stochastic averaging method to investigate the stationary response of a

multi-degree-of-freedom vibro-impact system excited by Gaussian white noise. By applying

an improved stochastic averaging method, Namachchivaya [13] examined the stochastic

dynamics of a random vibro-impact system. Based on the average energy loss, Gu [14]

proposed a new method to study the response of random vibro-impact systems excited by

Gaussian white noise. For a vibro-impact system under real noise excitations, Liu [15] applied

a similar method to investigate the stationary probabilistic response. Recently, Wang [16, 17]

introduced a new path integration method to explore the stochastic response and stochastic

bifurcation problems of vibro-impact systems. The study of stochastic bifurcation problems in

vibro-impact systems has captured the attention of numerous scholars, leading to significant

achievements [18-21]. Xu [22] provided a comprehensive review on the research of stochastic

non-smooth systems.

The largest Lyapunov exponent serves as a crucial indicator for studying the local

stability and bifurcation behavior of stochastic dynamical systems. For a vibro-impact system

with Gaussian white noise perturbation, Feng [23] proposed a method to calculate the largest

Lyapunov exponent and subsequently investigated the stochastic bifurcation based on the

largest Lyapunov exponent. By calculating the largest Lyapunov exponent, Kumar [24, 25]

examined the stochastic bifurcation of a Duffing–Van der Pol vibro-impact system driven by

Gaussian white noise. Moreover, Wang [26] recently explored the almost sure stability of a

vibro-impact system excited by bounded random perturbations through the computation of the

largest Lyapunov exponent. According to the large deviation theory [27], it is important to
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recognize that even if the stochastic dynamical system is stable with probability 1, the pth

moment of response may still be unstable and grow exponentially. Therefore, it becomes

essential to investigate the moment stability of a stochastic dynamical system. The moment

stability is provided by the pth moment Lyapunov exponent defined as

 0 0
1, lim log ( ; ) ,p

t
p E t

t
    x x x (1)

where  0;tx x is the state vector of a stochastic dynamical system. If  0, 0p x , then

the pth moment of the solution  0;tx x is stable; otherwise, it is unstable. According to the

results of Arnold [28], the limit of Eq. (1) exists and is independent of x0 under the specified

conditions (i.e.,    0,p p  x ). And the derivative of pth moment Lyapunov exponent

at 0p  is equal to the largest Lyapunov exponent  [29], i.e.,

   0
0

d 1lim log , .
d t

p

p t
p t






   x x (2)

The stochastic stability, D-bifurcation and P-bifurcation [27, 30] of a stochastic dynamical

system can be determined by the pth moment Lyapunov exponent. Consequently, the pth

moment Lyapunov exponent offers a more comprehensive and profound description of the

stochastic dynamical characteristics exhibited by nonlinear dynamical systems.

Although the pth moment Lyapunov exponent plays a crucial role in the study of

stochastic dynamical systems, its calculation can be particularly challenging. In recent

decades, researchers have made significant progress in investigating the pth moment

Lyapunov exponents for smooth stochastic dynamical systems, yielding fruitful results[31-36].

However, for a non-smooth stochastic dynamical systems, the research on the pth moment

Lyapunov exponent is still limited. Furthermore, the random excitations often assumed to be

Gaussian white noises for the sake of mathematical simplicity, but the Gaussian white noise is

only an ideal model and does not exist in practical engineering. The objective of this paper is

to explore the pth moment Lyapunov exponent and stochastic stability of a vibro-impact

system driven by non-Gaussian colored noise. A brief outline of this paper is as follows. In

Section 2, the dynamic model of a Rayleigh-Van der Pol stochastic vibro-impact system is

introduced. In Section 3, the non-Gaussian colored noise is simplified to an

Ornstein-Uhlenbeck random process through applying the path-integral method. In Section 4,

the second-order asymptotic analytic solution of the pth moment Lyapunov exponent is

calculated by employing the L.Arnold perturbation method. And then in Section 5, based on

the pth moment Lyapunov exponent, stability index and largest Lyapunov exponent, the

effects of noise and system parameters on the stochastic dynamics of the vibro-impact system
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are studied and discussed in detail. Conclusions are drawn in Section 6.

2. Formulation

Consider a Rayleigh-Van der Pol stochastic vibro-impact system, whose governing

equation is presented as

   2 2 2
1 2 3 , 0

, 0.

x x c c x c x x t x x

x rx x

 

 

      

  

&& & & &

& &
(3)

Where  is the natural frequency of the system, 1c is the linear damping coefficient, 2c
and 3c denote the nonlinear damping coefficients,  t is a non-Gaussian colored noise.

r ( 0 1r  ) denotes the coefficient of restitution, which is used to describe the impact

energy loss. x& , x& represent the impact velocity and rebound velocity respectively. It is

very difficult to deal with the non-smooth stochastic dynamical system (3) directly because of

the discontinuity of its motion state. For the convenience of analysis, the system (3) is

transformed into a smooth system by applying a non-smooth coordinate transformation [37].

The Zhuravlev transformation is given as

   , sgn , sgn ,x y x y y x y y  & & && && (4)

where

 
1, 0,

sgn 0, 0,
1, 0.

y
y y

y


 
 

By introducing the Dirac delta function[7, 18], and substituting the transformation (4) into Eq.

(3) , we can get

       2 2 2
1 2 3 1 .y y c c y c y y r y y y y t        && & & & & & (5)

where    is a Dirac delta function. In order to investigate the stochastic stability of the

vibro-impact system analytically, we assume the random term is a small quantity of parameter

 ( 0 1  ) and the impact energy loss and damping term are both small quantity of

parameter 2 . Then, the system (5) becomes

      2 2 2 2
1 2 3 1 .y y c c y c y r y y y y t           && & & & & (6)

3. Approximation to the Markov process

The non-Gaussian colored noise  t is the solution of the following differential

equation
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0
0 0

d ( ) 1 d 1( ) ( )
d d r
t V t
t

  
  

   , (7)

0

2
0 0

0
0 0 0

( ) ln 1 ( 1)
( 1) 2r
DV r
r D

 


 
     

, (8)

where  t is a Gaussian white noise with intensity 02D ; 0 denotes the noise

correlation time, 0r is the noise departure coefficient which represents the departure from

the Gaussian noise. It can be seen that, when 0 1r  , the non-Gaussian color noise  t is

reduced to an exponential Gaussian color noise with the correlation function
0

0 0( ) ( ) ( ) t st s D e      , i.e., an Ornstein-Uhlenbeck(O-U) process with the correlation

time 0 . Moreover  t will be further simplified to a Gaussian white noise if 0 0  .

Based on the results of Fuentes [38], we find that the stationary probability density

function  sP  of Eq. (7) can be normalized if and only if when  ,3r  , and it is

represented as

   
0

1
12

0
0

0

1 1 1
2

r

sP r
Z D

 


 
   

 
, (9)

where Z denotes a normalization constant. According to Eq. (9), one easily obtains the

statistical properties of the process  t :

 

 
   

 
0 0 0 02

0

0,

2 5 3 ,     ,5 3 ,

,                            5 3,3 .

t

D r r
t

r








       
 

(10)

For 1 1r   , the following equation is obtained by applying the path-integral method

[38-40].

0

11 22
0 0

0 0
0 0 0 0 0 1

1 d ( ) 1 ( 1) 1 ( 1)
d 2 2rV r r

D D
    

    

   
        
    

, (11)

with the associated noise intensity 1D and the noise correlation time 1 respectively are
2

0
1 0

0

2(2 )
5 3

rD D
r

 
   

, 0
1 0

0

2(2 )
5 3

r
r

 


 . (12)

Thus, the non-Gaussian colored noise  t is reduced to an O-U process with the

associated noise intensity 1D and the noise correlation time 1

1
1 1

d ( ) 1 1( ) ( )
d
t t t
t

  
 

   , i.e.,  0 0d ( ) ( )d dt t t W t      o , (13)

where
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1 1 1 1

0 1 0 1 1 0 0

( ) 0, ( ) ( ) 2 ( ),

1 , 2 2 ,

t t s D t s

D D

   

    

   


  
(14)

 W t is a normal Wiener process and the symbol “ o ” denotes a Stratonovich stochastic

integral. Because the diffusion coefficient of the O-U process (13) is constant, the

Wong–Zakai correction term of Eq. (13) is equal to zero. Hence, the Itô stochastic differential

equation of Eq. (13) is given as

0 0d ( ) ( )d d ( )t t t W t      , (15)

with the power spectral density
2
0

2 2
0

( )S 


 



. (16)

Neglecting the nonlinear terms in system (6) implies

       
1 2

2
2 1 1 2 1 2

0

2

0d ( ) ( )d d ( )

d d ,

d 1 d ,

y y t

y y c r y y y t

t t t

t

W t

y

  



    







     

   ，

(17)

here 1 2,y y y y & .

By using the transformation  1 2cos , sin , 0, 2y e y e        , Eq. (17) is converted

to

      
      

2
2 1

2
2 1

0 0

d d ,

d

d ( ) ( )d d ( )

d ,

.

q q t t

h h t

t t t W t

t

     

 











  

  

 

   (18)

where

   1
1 1 cos 2 ,
2

q     1
1 sin 2 ,
2

h  

       2 1
1 1 sin cos 1 cos 2 ,
2

q c r        

      2 1
1 1 sin cos sin 2 .
2

h c r       

4. Moment Lyapunov exponent

According to Eq. (18), one easily finds that the random process  t is independent of

the variable  . Thus, the random process  t alone forms a diffusive Markov process
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with the following generator:

       2
0 1 2 ,L p L p L p L p     (19)

where

 
2

2
0 0 0 2

1 ,
2

L p    
  
  

   
  

     1 1 1 ,L p h pq   



 


     2 2 2 .L p h pq 



 


The moment Lyapunov exponent  p of system (18) is the largest eigenvalue of the

operator  L p [28, 32, 41] , i.e.,

       .L p T p p T p   (19)

Both the moment Lyapunov exponent  p and eigenfunction  T p are expressed as

the power series of  , respectively, i.e.,

         
         

2
0 1 2

2
0 1 2

,

.

n
n

n
n

p p p p p

T p T p T p T p T p

  

  

          

     

L L

L L
(20)

Substituting Eq. (20) into Eq. (19) gives

      0
0 0 0: 0,L p p T p    (21)

             1
0 0 1 1 1 0: ,L p p T p p L p T p     (22)

                    2
0 0 2 1 1 1 2 2 0: ,L p p T p p L p T p p L p T p       

M
(23)

4.1 Zeroth-order perturbation

Based on the definition of pth moment Lyapunov exponent  p , we get that

 0 0p  for any p . Thus, Eq. (21) is reduced to

     2
0 0 02

0 0 2

1 0
2

T p T p T p
   

  
  

   
  

. (24)

The separation of variables method can be employed to solve Eq. (24). Let

     0T p     , one has

2
0 0

1,  
2

c c     
    

  

  
， (25)
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which along with the periodic boundary condition    2      asserts that 0c 
and   is a constant. Thus, we have

 
 

 
 

2
0 0

1 0.
2

 
  

 
 

  
 

 
(26)

From Eq. (26), we can get

  0
1 2

0

,C C erf j


 


 
     

 

where  erf  is the error function; j stands for the imaginary unit. Because   is

bounded as   , so we obtain that 2 0C  i.e.,   is a constant. Therefore,

 0T p is a constant, i.e.,  0T p C .wq

The adjoint equation of Eq. (24) is given as

   * *
0 0 0.L p T p  (27)

By applying a similar method to solve Eq. (24), we obtain that

   *
0 ,

2
sPT p
C



 (28)

where  sP  is the stationary probability density function of the random process  t .

4.2 First-order perturbation
In light of the results in section 4.1, Eq. (22) is reduced to

          
      

0 1 1 1 0

1 1 0 .

L p T p p L p T p

p pq T p 

  

  
(29)

The solvability condition to Eq. (29) is

                 
2* *

1 1 0 0 1 1 0 00
,  d d 0.p L p T p T p p L p T p T p


 




       (30)

Thus, we can get

     
2

1 10

1 d d 0.
2 sp pq P


    





    (31)

Then, Eq. (29) becomes

       0 1 1 0 ,L p T p pq T p   i.e.,

   
2

2
0 0 1 12

1
2

T p pC q     
  

   
        

. (32)

Based on the results of Refs. [30, 32, 33, 42], the solution of Eq. (32) is given as following
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       1 1 10
, ; , d ,T p T p Cp q K      


   (33)

where

   , , ; , 0 ,K P d        



   , ; , 0P    is the transient density.

4.3 Second-order perturbation
By using the results obtained in sections. 4.1 and 4.2, Eq. (23) is converted to

            0 2 2 2 1 1 .L p T p C p pq L p T p    (34)

The solvability condition to Eq. (29) is

          

            
2 2 1 1

2 2 1 1
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2

0

,  

d d 0.
2 2
s s

C p pq L p T p

p p
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q L p
P

T

p

P
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p
  



  
 






 

  



 
(35)

From the solvability condition (35), one easily gets

         

        

2

02 1 1

1

2

2 0
d1 d

2 1
2 2 0 2 2 8 ,

2

16

d
2
sP

rp S S p S

p pq L p T p

c

C
 

 
 


 


 







  
      













 
(36)

where  S  is the power spectral density of the random process  t , and

           
0

2 cos d , , d .sS R R P K         
 


  

Since  0 0p  ,  1 0p  , and  is a small parameter, the pth moment Lyapunov

exponent is approximately formulated as

            2
2

2 1

2 1
2 2 0 2 .

16
2 8p p p

r
S S p S c


 




  
           

(37)

The stability index p is the non-zero solution of   0p  .Hence, from Eq. (37), one has

        1
1 16 1 2 2 8

2 2 0p r S c
S S

 
 

       
. (38)

The stability index 0p  indicates that the system is pth moment-stable as
0 pp   . And according to Eq. (2), the largest Lyapunov exponent can be given as

   
0

2
1

d ( )
8 1

2 4
8d
1 .

p

r
S cp

p


  


 
   

 
 (39)

5. Results and discussions

In order to verify the reliability of the approximate analytical solution of the moment
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Lyapunov exponent  p given by the L. Arnold perturbation method, the moment

Lyapunov exponents  p of the random vibro-impact system (3) are calculated

numerically by using the Monte Carlo method [43]. The original system (3) is simulated in

MATLAB by using the fourth-order Runge-Kutta method, and there have been fruitful

achievements [44] in the research of numerical calculation methods for vibro-impact systems.

Fig. 1 plots the analytical results and numerical results of the pth moment Lyapunov exponent

 p for different noise parameters. It is clear that the differences between analytical and

numerical results are very small, which indicates that the approximate analytical solution of

 p obtained by the perturbation method is valid. Thus, by using the analytical results of

the moment Lyapunov exponent  p and largest Lyapunov exponent  , the stochastic

stability of the vibro-impact system (3) can be further discussed in detail. From Eqs. (37),(38)

and (39), it can be seen that the stochastic stability of the system (3) is related to the power

spectral density  S  , the coefficient of restitution r , the damping coefficient 1c , and the

natural frequency  .

-2 0 2

0

2

4

6

8

10
x 10

-3

D0


(p

)

Analytical solutions
D0=0.1
D0=0.2
D0=0.3
D0=0.4

Fig. 1 Analytical and numerical solutions of moment Lyapunov exponents for the case
1 0 00.1, 1, 0.8, 0.1; 0.95, 0.5r c r        .

According to Eq. (39), one easily finds that the largest Lyapunov exponent  increases

with the increase of power spectral density  2S  , which implies that the almost-sure

stability of the vibro-impact system is reduced with the increase of the power spectral density

 2S  . When    12 4 8 1S c r      , the vibro-impact system is almost-sure

stable, and the system is unstable when    12 4 8 1S c r      . From Eqs. (12), (14)

and (16), it is clear that the power spectral density is determined by the noise parameters 0D ,

0r and 0 . For different parameters of the non-Gaussian colored noise  t , Figs. 2 and

Figs. 3 depict the moment Lyapunov exponents  p and largest Lyapunov exponents 

respectively. It can be observed from Fig. 2 that the stability region and stability index of the
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vibro-impact system gradually decrease with increasing of noise intensity 0D and departure

coefficient 0r , i.e., the stochastic stability of the system is reduced by the increase of noise

intensity 0D and departure coefficient 0r . Since the effect of departure coefficient 0r on

the stochastic stability is very small as 0 1r  , it can be neglected. In view of Fig. 2(c), it is

seen that the stochastic stability of the system is enhanced by the increase of correlation time

0 . And for the case 0 0.0001  , 0 0.001  and 0 0.01  , the pth moment Lyapunov

exponents  p are almost identical, which means that the stochastic stability of the system

is affected by the noise correlation time 0 slightly when the parameter 0 is very small.

From Fig. 3, it can be found that the noise intensity 0D significantly effects the stochastic

stability of the vibro-impact system, especially in the situation of small value of natural

frequency. Therefore, more attention should be paid to noise and strong noise should be

avoided, especially when the value of natural frequency  of the vibro-impact system is

small.
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0=0.05
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Fig. 2 Effect of noise intensity on the moment Lyapunov exponent for
0.1, 0.8,r   1, 0.1c   ; (a) 0 00.95, 0.5r   ; (b) 0 00.1, 0.5D   ;

(c) 0 00.1, 0.95D r  .
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Fig. 3 Largest Lyapunov exponent for 0 00.1, 0.8, 0.1; 0.95, 0.5r c r      .

For different values of natural frequency  , the largest Lyapunov exponents  and

pth moment Lyapunov exponents  p of the vibro-impact are described in Fig. 3 and Fig

4. Based on the fact disclosed in Fig. 4, it can be seen that along with increasing the value of

parameter  , the value of stability index p gradually becomes larger. One can also easily

find that the largest Lyapunov exponent  decreases significantly with the increase of

parameter  as shown in Fig. 3. According to Eq. (37-39), it can be found that the natural

frequency  can directly influence on the stochastic stability of the system, moreover

increasing the parameter  lead to the strongly stable of the system.
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
(p

)

=0.5
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=1.5
=2.0

=2.5

Fig. 4 Effect of natural frequency  on the moment Lyapunov exponent for

1 0 0 00.1, 0.8, 0.1; 0.1, 0.95, 0.5r c D r       .

The pth moment Lyapunov exponents  p of the vibro-impact system for different

values of parameter r are plotted in Fig. 5. In view of Fig. 5, it is clear that the stability

index p gradually decreases with the increase of parameter r , which means the stochastic

stability of the system is reduced with increasing the parameter r . From Eq. (39), we find
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that the largest Lyapunov exponent  of the vibro-impact system increases with the increase

of parameter r . The system is almost-sure stable when   11 2 4 8r S c     and

the system is almost-sure unstable when   11 2 4 8 1S c r      . Therefore, the

stochastic stability of the vibro-impact system is reduced with increasing the coefficient of

restitution r . However, the energy loss of the vibro-impact system is assumed to be a small

quantity (i.e., 0 1 1r   ) in the above calculation. Thus, we should choose the

appropriate coefficient of restitution r to stabilize the random vibro-impact system.
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Fig. 5 Effect of parameter r on the moment Lyapunov exponent for

1 0 0 00.1, , 0.1; 0.1, 0.95, 0.5c D r         .

The pth moment Lyapunov exponents  p of the vibro-impact system for different values

of the damping coefficient 1c are shown by Fig. 6, it can be seen that the moment stability of

the system is reduced with increasing the parameter 1c . According to Eq. (39), we assert the

largest Lyapunov exponent  of the vibro-impact system increases with the increase of

parameter 1c , i.e., the almost-sure stability of the system is reduced with the parameter 1c . If

   1 2 4 2 1c S r      , the system will be almost-sure stable, otherwise, the system

is almost-sure unstable. Therefore, the stochastic stability of the vibro-impact system is

reduced with the increase of linear damping coefficient 1c .
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Fig. 6 Effect of damping coefficient 1c on the moment Lyapunov exponent for

0 0 00.01, 0.8, ; 0.1, 0.95, 0.5r D r         .

5. Conclusion

By calculating the pth moment Lyapunov exponent  p , the stochastic stability of

the vibro-impact system driven by non-Gaussian colored noise excitation is studied. The

random vibro-impact system is transformed into a smooth random dynamical system through

using the Zhuravlev transformation, and the non-Gaussian colored noise  t is simplified

to be an O-U random process by the path-integral method. For weak noise excitation and

finite values of p, the pth moment Lyapunov exponent  p is calculated by applying the

L.Arnold perturbation method, and the second-order approximate solution of  p is

derived. Thereafter, in term of the value of  p , the stability index p and largest

Lyapunov exponent  are obtained. Furthermore, the numerical results of the pth moment

Lyapunov exponent  p are provided by utilizing Monte Carlo simulation, which are

well consistent with the approximate analytical solutions. Finally, based on the pth moment

Lyapunov exponent  p and largest Lyapunov exponent  , the effects of the noise, the

coefficient of restitution r , the linear damping coefficient 1c , and the natural frequency 

on the stochastic stability are discussed.
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