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Abstract. We study the maximum number of limit cycles which bifurcate from the periodic

orbits of the linear center ẋ = y, ẏ = −x, when it is perturbed in the form

ẋ = y − ε(1 + cosl θ)P (x, y), ẏ = −x− ε (1 + cosm θ)Q(x, y), (1)

where ε > 0 is a small parameter, l and m are positive integers, P (x, y) and Q(x, y) are

arbitrary polynomials of degree n, and θ = arctan (y/x). As we shall see the differential

system (1) is a generalization of the Mathieu differential equation. The tool for studying
such limit cycles is the averaging theory.

1. Introduction and Statement of the Main Results

A limit cycle of a differential system is a periodic orbit having a neighborhood where it is
the unique periodic orbit of the differential system. The notion of limit cycle was introduced
in 1881 by Poincaré [11].

The study of the existence and number of limit cycles that a differential system in R2 can
exhibit is one of the more difficult problems in the qualitative theory of the differential system
in the plane. Thus in 1900 Hilbert [6] presented a list of 23 problems to the International
Conference of Mathematicians in Paris, most of these problems were solved partially or com-
pletely, but the second part of the 16th problem remains unsolved up today. This problem ask
about the existence of an upper bound for the maximal number of limit cycles that polynomial
differential systems in R2 of a given degree can exhibit.

A source of producing limit cycles is by perturbing the periodic orbits of a center, see for
instance the papers [3, 12] and the book of Christhoper and Li [5], and the hundreds of references
quoted there.

The classical Mathieu’s differential equation [10]) is

ẍ+ b (1 + cos θ)x = 0,

where b is real parameter, and the dots denote second derivative with respect to the time t.
This equation was first discussed in 1868 by Mathieu while studying the problem of vibrations
on an elliptical drumhead. Matthieu’s equation has many applications in engineering [13, 15]
and also in theoretical and experimental physics [2, 7, 16]. information on its periodic orbits
can be found in [18].

Mathieu’s equation can be written as the differential system

ẋ = y, ẏ = −b (1 + cos θ)x,

In [4] Chen and Llibre studied the limit cycles of the differential system

ẋ = y, ẏ = −x− ε (1 + cosm θ)Q(x, y), (2)

where ε > 0 is a small parameter and Q (x, y) is an arbitrary polynomial of degree n.

In the present work we study the limit cycles of the following generalization of the differential
system (2)

ẋ = y − ε
(
1 + cosl θ

)
P (x, y), ẏ = −x− ε (1 + cosm θ)Q(x, y), (3)
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where ε > 0 is a small parameter, l and m are positive integers, and P (x, y) and Q(x, y) are
arbitrary polynomials of degree n. More precisely, we study the maximum number of limit
cycles which bifurcate from the periodic orbits of the linear center ẋ = y, ẏ = −x, when it is
perturbed in the form (3).

Our main result is the following one.

Theorem 1. Using the averaging theory of first order the maximum number of limit cycles of
the differential system (3) bifurcating from the periodic solutions of the linear center ẋ = y, ẏ =
−x is at most:

• n if n is even, and l and m are not both even;
• n/2 if n, l and m are even;
• n if n is odd and l and m are one odd and the other even;
• (n− 1)/2 if n is odd, and l and m are even;
• n if if n, l and m are odd.

Theorem 1 is proved in section 3.

In section 2 we present a summary of the averaging theory of first-order and of the Descartes
theorem that we shall need for proving Theorem 1.

2. The averaging theory of first-order and the Descartes theorem

2.1. Averaging theory of first-order. In these subsection we summarize the result stated in
Theorems 11.5 of the book of Verhulst [17] on the averaging theory. For a general introduction
to the computation of periodic orbits using the averaging theory see the book [8].

Consider the periodic differential system

dx

dθ
= X (θ, x) = εF (θ, x) + ε2Φ (θ, x, ε) , (4)

where ε is a small parameter, x ∈ R, θ ∈ S1 = R/ (2πZ) and F : S1 ×D → R, Φ : S1 ×D ×
(−ε0, ε0)→ R are C2 functions, being D an open interval of R and F and Φ are periodic with
period 2π in the variable θ.

Now we consider the averaging function f : D → R defined by

f(x) =
1

2π

∫ 2π

0

F (θ, x) dθ. (5)

It is known that if x(θ, x0) is the solution of system (4) such that x(0, x0) = x0, then we have

x(2π, x0)− x0 = εf(x0) +O(ε2). (6)

So for ε > 0 sufficiently small the simple zeros of the averaged function f(x) provide limit
cycles of differential equation (4).

2.2. The Descartes Theorem. In order to study the real zeros of the function f(x) we shall
use the Descartes Theorem (for a proof see [1]).

Theorem 2 (Descartes Theorem). Consider the real polynomial p(ρ) = ai1ρ
i1+ai2ρ

i2+···+ainρin
with 0 ≤ i1 ≤ i2 ≤ ···≤ in and aij 6= 0 real constants for j ∈ {1, 2, ..., n}. When aijaij+1

< 0,
we say that aij and aij+1

have a variation of sign. If the number of variations of signs in
the polynomial p(ρ) is m, then p(ρ) has at most m positive real roots. Moreover, it is always
possible to choose the coefficients of p(ρ) in such a way that p(ρ) has exactly n− 1 positive real
roots.
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3. Proof of Theorem 1

Let the polynomials P (x, y) =
n∑

i+j=0

aijxiyj and Q(x, y) =
n∑

i+j=0

bijxiyj be.

We write the differential system (3) in polar coordinates (ρ, θ) defined by x = ρ cos θ and
y = ρ sin θ, with ρ > 0, we obtain

ρ̇ = −ε
(
cos θ(1 + cosL θ)P (ρ cos θ, ρ sin θ) + sin θ(1 + cosm θ)Q(ρ cos θ, ρ sin θ)

)
,

θ̇ = −1 +
ε

ρ

(
sin θ(1 + cosL θ)P (ρ cos θ, ρ sin θ)− cos θ(1 + cosm θ)Q(ρ cos θ, ρ sin θ)

)
.

(7)

Taking in the differential system (7) the variable θ as the new independent variable, system
(7) reduces to the differential equation

dρ

dθ
= ε

(
cos θ(1 + cosL θ)P (ρ cos θ, ρ sin θ) + sin θ(1 + cosm θ)Q(ρ cos θ, ρ sin θ)

)
+O(ε2)

= ε

n∑
i+j=0

cosi θ sinj θ
(
aij(cos θ + cosL+1 θ) + bij(sin θ + sin θ cosm θ)

)
ρi+j +O(ε2)

= εF (θ, x) +O(ε2).
(8)

Since this differential equation is written in the normal form (4), so we can apply to it the
averaging theory of first order.

In our study we shall use the following formulas for computing the averaged function:

∫ 2π

0

cosp θ sin2q θdθ =
(2q − 1)!!

(2q + p) (2q + p− 2) ... (p+ 2)

∫ 2π

0

cosp θdθ = 2παp,2q,∫ 2π

0

cos2s θdθ =
(2s− 1)!!

2ss!
2π = 2πβ2s,∫ 2π

0

cos2s+1 θdθ = 0,∫ 2π

0

cosp Θ sin2q+1 θdθ = 0.

(9)

where in the first and second formula p, q and s are positive integers, in the third one s is
a non-negative integer, and in the fourth one p is a positive integer and q is a non-negative
integer. For more details of these four integrals see [19, pages 152-153].

Proof of Theorem 1 when n is even, and l and m are not both even. We consider the following
three cases with n even.

Case 1: m and l are odd. Then we compute tha averaged function (5), and we obtain

f (ρ) =
1

2π

∫ 2π

0

F (ρ,Θ) dθ

=
1

2π

∫ 2π

0

n∑
i+j=0

(aij cosi+1 θ sinj θ + aij cosi+l+1 θ sinj θ

+bij cosi θ sinj+1 θ + bij cosi+m θ sinj+1 θ)ρi+jdθ
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=
1

2π

∫ 2π

0

n+1∑
i+2q=2

((ai,2q−1 cosi+1 θ + ai,2q−1 cosi+l+1 θ) sin2q−1 θ

+
(
bi,2q−1 cosi θ + bi,2q−1 cosi+m θ

)
sin2q θ)ρi+2q−1

+

n∑
i+2q=2

((ai,2q cosi+1 (θ) + ai,2q cosi+l+1 θ) sin2q (θ)

+
(
bi,2q cosi θ + bi,2q cosi+m θ

)
sin2q+1 θ)ρi+2qdθ

=
1

2π

[
n+1∑

2s+1+2q=3

∫ 2π

0

b2s+1,2q−1 cos2s+1+m θ sin2q θρ2s+2qdθ

+

n∑
2s+2q=2

∫ 2π

0

b2s,2q−1 cos2s θ sin2q θρ2s+2q−1dθ

+

n+1∑
2s+1+2q=3

∫ 2π

0

(a2s+1,2q cos2s+2 θ sin2q (θ) ρ2s+1+2qdθ

+

n∑
2s+2q=2

∫ 2π

0

a2s,2q cos2s+l+1 θ sin2q (θ) ρ2s+2qdθ

]

=

n/2∑
s+q=1

b2s+1,2q−1α2s+1+m,2qρ
2s+2q +

n/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1

+

n/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

n/2∑
s+q=1

a2s,2qα2s+l+1,2qρ
2s+2q

=

n+1∑
k=1

Akρ
k.

Since f(ρ) is a polynomial generated by a linear combination of the monomials
{
ρ, ρ2, ..., ρn+1

}
.

Using Descartes Theorem it follows that the polynomial f(ρ) have at most n simple positive
zeros, and consequently from subsection 2.1 we get using the averaging theory of first order
that for ε > 0 sufficiently small the differential system (3) has at most n limit cycles bifurcating
from the periodic solutions of the linear center (3) with ε = 0.

Case 2: m is odd and l is even. Working as in the case 1 we obtain

f (ρ) =
1

2π

∫ 2π

0

F (ρ, θ) dθ

=

n/2∑
s+q=1

b2s+1,2q−1α2s+1+m,2qρ
2s+2q +

n/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1 +

n/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

n/2∑
s+q=1

a2s+1,2qα2s+l+2,2qρ
2s+1+2q =

n+1∑
k=1

Ãkρ
k.

Again f(ρ) is a polynomial generated by the monomials
{
ρ, ρ2, ..., ρn+1

}
, and as in case 1 by

Descartes Theorem it follows that for ε > 0 sufficiently small the differential system (3) has at
most n limit cycles bifurcating from the periodic solutions of the linear center (3) with ε = 0.
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Case 3: m is even and l is odd. Then

f (ρ) =
1

2π

∫ 2π

0

F (ρ, θ) dθ

=

n/2∑
s+q=1

b2s,2q−1α2s+m,2qρ
2s+2q−1 +

n/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1 +

n/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

n/2∑
s+q=1

a2s,2qα2s+l+1,2qρ
2s+2q =

n+1∑
k=1

Âkρ
k.

As in the previous two cases we conclude that for ε > 0 sufficiently small the differential system
(3) has at most n limit cycles bifurcating from the periodic solutions of the linear center (3)
with ε = 0. �

Proof of Theorem 1 when n, l and m are even. Working as in case 1 we compute the averaged
function and we get

f (ρ) =
1

2π

∫ 2π

0

F (ρ, θ) dt

=

n/2∑
s+q=1

b2s,2q−1α2s+m,2qρ
2s+2q−1 +

n/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1 +

n/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

n/2∑
s+q=1

a2s+1,2qα2s+l+2,2qρ
2s+1+2q =

(n/2)+1∑
k=1

B̃kρ
2k−1.

Since f(ρ) is a polynomial generated by a linear combination of the monomials
{
ρ, ρ3, ..., ρn+1

}
.

Using Descartes Theorem it follows that the polynomial f(ρ) have at most n/2 simple positive
zeros, and consequently from subsection 2.1 we get using the averaging theory of first order that
for ε > 0 sufficiently small the differential system (3) has at most n/2 limit cycles bifurcating
from the periodic solutions of the linear center (3) with ε = 0. �

Proof of Theorem 1 if n, l and m are odd. Again working as in case 1 we compute the averaged
function and we obtain

f (ρ) =
1

2π

∫ 2π

0

F (ρ, θ) dθ

=

(n−1)/2∑
s+q=1

b2s+1,2q−1α2s+1+m,2qρ
2s+2q +

(n+1)/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1 +

(n−1)/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

(n+1)/2∑
s+q=1

a2s,2qα2s+l+1,2qρ
2s+2q =

n+1∑
k=1

Ckρ
k.

Since the polynomial f(ρ) has the monomials
{
ρ, ρ2, ..., ρn+1

}
. Using Descartes theorem it fol-

lows that the polynomial f(ρ) has at most n simple zeros. Therefore for ε > 0 sufficiently small
the differential system (3) has at most n limit cycles bifurcating from the periodic solutions of
the linear center (3) with ε = 0. �

Proof of Theorem 1 if n is odd and l and m are one odd and the other even. We distinguish two
cases with n odd.
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Case 1: m is odd and l is even. Computing the averaged function we get

f (ρ) =
1

2π

∫ 2π

0

F (ρ, θ) dθ

=

(n−1)/2∑
s+q=1

b2s+1,2q−1α2s+1+m,2qρ
2s+2q +

(n+1)/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1 +

(n−1)/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

(n−1)/2∑
s+q=1

a2s+1,2qα2s+l+2,2qρ
2s+1+2q =

n∑
k=1

C̃kρ
k.

Case 2: m is even and l is odd. Then the averaged function

f (ρ) =
1

2π

∫ 2π

0

F (ρ, θ) dθ

=

(n+1)/2∑
s+q=1

b2s,2q−1α2s+m,2qρ
2s+2q−1 +

(n+1)/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1 +

(n−1)/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

(n−1)/2∑
s+q=1

a2s,2qα2s+l+1,2qρ
2s+2q =

n∑
k=1

Ĉkρ
k.

Now the polynomials f(ρ) in cases 1 and 2 are generated by the monomials
{
ρ, ρ2, ..., ρn

}
.

Using Descartes theorem it follows that the polynomial f(ρ) has at most n − 1 simple zeros.
Therefore for ε > 0 sufficiently small the differential system (3) has at most n− 1 limit cycles
bifurcating from the periodic solutions of the linear center (3) with ε = 0. �

Proof of Theorem 1 if n is odd, and l and m are even. Computing the averaged function we
obtain

f (ρ) =
1

2π

∫ 2π

0

F (ρ, θ) dθ

=

(n+1)/2∑
s+q=1

b2s,2q−1α2s+m,2qρ
2s+2q−1 +

(n+1)/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1 +

(n−1)/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

(n−1)/2∑
s+q=1

a2s+1,2qα2s+l+2,2qρ
2s+1+2q

=

(n+1)/2∑
k=1

Dkρ
2k−1 +

(n−1)/2∑
k=1

D̂kρ
2k+1.

The polynomial f(ρ) is generated by the monomials
{
ρ, ρ3, ..., ρn

}
. Using Descartes theorem

it follows that the polynomial f(ρ) has at most (n − 1)/2 simple zeros. Therefore for ε > 0
sufficiently small the differential system (3) has at most (n− 1)/2 limit cycles bifurcating from
the periodic solutions of the linear center (3) with ε = 0. �

Proof of Theorem 1 if n, l and m are odd. Again working as in case 1 we compute the averaged
function and we obtain

f (ρ) =
1

2π

∫ 2π

0

F (ρ, θ) dθ

=

(n−1)/2∑
s+q=1

b2s+1,2q−1α2s+1+m,2qρ
2s+2q +

(n+1)/2∑
s+q=1

b2s,2q−1α2s,2qρ
2s+2q−1 +

(n−1)/2∑
s+q=1

a2s+1,2qα2s+2,2qρ
2s+1+2q +

(n+1)/2∑
s+q=1

a2s,2qα2s+l+1,2qρ
2s+2q =

n+1∑
k=1

Ckρ
k.
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Since the polynomial f(ρ) has the monomials
{
ρ, ρ2, ..., ρn+1

}
. Using Descartes theorem it fol-

lows that the polynomial f(ρ) has at most n simple zeros. Therefore for ε > 0 sufficiently small
the differential system (3) has at most n limit cycles bifurcating from the periodic solutions of
the linear center (3) with ε = 0. �
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[9] J. Llibre, C. Valls, Limit cycles for a variant of a generalized Riccati equation, Appl. Math. Lett. 68 (2017),

76 − 79.

[10] É. Mathieu, Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique, J. Math. Pures
Appl. 13 (1868), 137 − 203.
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