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Abstract: In this study an advancecomputational intelligenceschemeis designed and
implementedo solvethird order nonlineamultiple singularsystens represated withEmden
Fowler differential equation (EFDE) by exploiting the efficacy ofrtificial neural network
(ANNSs), genetic lyorithms (GAs) and active-set algorithm (ASA) i.e., ANN-GA-ASA. In the
schemeANNSs areused to discretize the EFD& formulation ofmean squared error based fitness
function The optimizatiortask forANN models ofnonlinear multisingular system is p®rmed

by integrated cometency GA and ASAThe effidency of the designedANN-GA-ASA is
examined by solvindive different variantsof the singular modelto check the effectiveness,
reliability and significance The gatistical investigatiors arealso performed toauthenticate the
precision,accuracyand convergence

Keywords: NonlinearEmdenFowler equationArtificial NeuralNetworks,Statistical Analysis,
Genetic Agorithms, Singular §stems Active-Set Algorithm, Hybrid Computing

1. Introduction

Astrophysicist Jonathan Homer Lane [1] and Robert Emden [2] first time introduced nonlinear
singular LaneEmdenmodelworking on thermal performance afspherical cloud of gas and
classical law of thermodynamics [3]. Teangular modelslesiqhatea variety of phenomena in
physical science [4], density profile of gaseous star [5], catalytic diffusion reactions [6], isothermal
gas spheres [7], catalytic diffusion reactions §83|lar structure [9], electromagnetic theory [10],
mathematical plsics [11], classical and quantum mechanics [12], lasiciy magnetic fields [13],
isotropic continuous media [14], dusty fluid mod§l$] and morphogenesis [16To find the
solution ofthesesingular models are always very challengeable and hard tdehdnd to the
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singularity at the originThe generic form on of such model represented with third order nonlinear
EmdenFowler equation is written as{L

yi(ﬁ)fgezt—p 8(0 ﬁB(tpz'.—l)y(t) #+Dig(y) 05

(1)
y(0)=1Y,, ¥i(0) =0, y (O) ©

There are onlyew numerical and analytiexistingtechniquedo tackle suchonlinear singular
modesk (1). To mention fewreportedtechniquedo solve the singular modetspresented with
differential equatins includeShawagfeh [18] used thdomian decomposition meblal (ADM),
Wazwaz [19] als@ppliedADM to avoid the difficulty of singularityLiao [20] applied an analytic
algorithmto avoid the singularityiie andJi [21] developed a numericathemebased on Taylor
series Nouh [22] applied power series solutiondsingPade approximation technigas well as
Euler-Abel transbrmationandMandelzweigand along withlrabakin [23] developed Bellman and
Kalabas quasi linearization methadll thesetechniquesave their own performance, accuracy
and efficiency, as well asadequaciesver one anotheBeside these deterministic procedure,
numerical solvers based on heuristic computing paradigm looks promising to be incorporated in
the domain of nonlinear siotar systems.

The considerable potential of heuristmmputing paradigrbased on stochastiwimericalsolvers
is exploited for solvindinearnonlinearsystens by manipulating theniversal approximation
competency of artificial neural networks (ANNs)optimized with local/global search
methodologie$24-26]. Fewrecent applicationsf paramount significance includédomasFermi
atom's model [27prey-predator modelR28], plasma physics problems [28}pdels of fractional
ordinary differential equationf30], model of heartbeaidynamics[31], linear fractional cable
equation32], machines [33], control systent®4], cell biology [35], power [36] and energy [37
The intention othe present study is presenthedetail studyof thesingularEmdenFowler model
along withnumerical result$or bettersystemunderstandingisingthe stochastic technique.

The aim of the presenstudy is to find the solution ofequation (1)by integratedintelligent
computing paradigmbasedon the artificial neural networks (ANNspptimized with genetic
algaithms (GAs) refined by the active-set algorithm (ASA), i.e., ANN-GA-ASA. The major
features of the proposed solver ANBA-ASA arebriefly given below

1 A novel application of integratethtelligent computing paradigm ANBA-ASA is
presentedor finding thesolution of nonlineamulti-singular modelgoverned with third
ordernonlinearEmdenFowler equation

9 Consisteny matchingoutcomef the proposeANN-GA-ASA with referencesolutions
for different variant ohonlinearEmdenFowler systenestablished thevorth of the solver
in terns of accuracy and convergence

1 \Validation of the performancis ascertained through statistical observatiomsnultiple
execution of ANN-GA-ASA in terms of mean absolute deviatioMAD), Theil's
inequality coefficien(TIC) and Nash Sutcliffefficiency (NSE) performance indices



1 Beside provision of accurate solution of nonlinear ErAllenver differential system,
smoothimplementation, ease in understandisigbility, applicability and robustness are
other valuable promises.

Rest of the paper is organized as follows: proposed framework of stochastic solv&sANNSA
is presented in Sect 2, performance measures ard AstSect 3result with discussions are
presented in Sect 4, while conclusions with future related works are listed Sect 5.

2. ProposedMethodology

The proposedframeworkas shown in Fig. for presenting the solution ofiodel (1) isdividedin

two portins. Firstly, by introducingthe procedure for formulation an errorbasedfitness
functionandsecondly the combination o6GA-ASA is presentedo optimize thditness function
for system (1).

2.1 ANN modeling

The variety of ANNs models introduced by research community for sb&itiors of nonlinear
systens arising in application of broadields [38-40]. The feedforward ANN modek based
procedure for approximating solutions and their respective mh order derivatives are
mathematically presentexs:
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Wherea,, d; and b, are theespectivgi componergof a , andb vectors while mshowsthe

derivativeorder The log-sigmoidexpressiorh(t) =(1 +exp(t) ‘and its derivative arased as

an activatiorftransferfunctiors in the networksTheupdatedorm of the above networis written
asfollows:
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In case of EmdenFowler equation (), the expression for high order derivative in ANN
formulations is given as:
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The networks (4) to (6) are arbitrarily combined to form the ANN architecture for nonlinear
EmdenFowler equation as shown in Fig.The combination of the equatiord (o(6) is exploited
for the fitness functioformulation of equation (1) imean squad errorsenseas:
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where g and e, arethefitnesgerrorfunctiors associated witlmain body ofequation(1) andits
initial conditions respectively, whileN =1/h, & =y&), t,=kh f =f(t). An appropriate
optimization procedure is adopted for learningnaight vectorW = [a ,d, b ], such that error
baseditnessfunction (7) approacheto optimal zero value

2.2 Optimization procedure

The weights ofANNs are trained by manipulating the strength of integrated -meaistic
computing procedureased on GAsupported withASA, i.e., GAASA. Thegraphical abstract of
present designed methodology for solving equation (1) is presented in Fig. 1.

Global searchfef i cacy of GAs, i ntr oduc €3, iskexploitedofdr | a n d
finding the weight vectow of ANN. Population formulation with candidate solution or individual

in GAs is performed using the bounded real numbers. While, each candidate solution or individual
has elements equal to unknown weights in ANN models. GAs operate with its fundamental
opeaators based on selection, crossover, mutation and elitism procedurbasabden used in
manyapplications recently, for instan@mlving nonlinear electric circuit models [43], emergency
humanitarianlogistics €heduling[44], dynamcs of nonlinear Tre s ¢ h 6 s [4b]r taeling m
salesman blem[46], parameter estimation [47gdal coliform predictive mod@8], nonlinear
nanofluidc model [49], optimization ofvireless sensor network in smart gri@®], nonlinear
micropolar fluid flow systems [S51]iecommendation systen}§2] and predicton of thermal
conductivity[53].

The optimized parameters of GA converge faster by the hybridization procedure with the
appropriate local search method by takidgbgl best of GAs as initial weights. Therefore,
efficient local search method based a@tivee-set algorithm(ASA) is used of rapid fine tuning of
parameterRecently ASA based optimizatiors used in many applications e.g., water distribution
systemg54], solution of optimal controlneblemg[55], distributed model predictive control [56],
transportationof discrete network design -kevel problem[57] and solution of &ll/sphere
constrainedoptimization poblems [58]. In the present study, thgbrid scheme based @BA-

ASA is usedn order to tune the decisiaariables forsolving thethird order singular mod€L).

The detailed pseudocode of G¥SA is tabulated in Table 1
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Figure 1. Framework of proposed methodologysolvenonlinearEmdenFowler model



Table 1 Workflow of optimization schem&A-ASA in pseudecode

Genetic Algorithms procedure started

Inputs: The chromosome /individual with  equal number of unknown elements
in the Networks as: W = [a, d,b], where a=la, & 4., .4
d=[d, d .d., ,Jandb=[b, b ;0. Kk
Population: A set of chromosomes represented as:

P=[W, W,,,...WT, w=[a, d P
Output: The Best Global weights trained by GAs Wa. ga

Initialization . Generate chromosome W with  real bounded entries and
initial population P with s et of W vectors to make an initial P.
Initialize parameters 6 GA&nd 6 gaopti msetd .routines

Fithess formulation : Obtain the fitness ein P forall W using equation S
(5) to(7)

Termination : Terminate the procedure to attain any of the following

1 O&Fitness  attained e K 10-186
i Tolerances 6(TolFun and TolCon) K 10-186, & T o | KX10-206,
1 ¢6StallGenLimit K 1206 , 6Generations Kk 800

1 6PopulationSize K 3006

T Others taken as deGXafurctiors. of 6

Go to step storage , when termination criteria meet,
Ranking : Ranking is performed for each W of P as per their quality on
fitness € achieved.
Reproduction
6Selection:  @selectionuniform 0.
1 oCrossover: @crossoverheuristic 0.
1 6Mutations: @mutationadaptfeasible 0.
T 6EI i ti samy5% individualsin next P,
Go t ditneds evaluation 6 step .
Storage : Save the weight vector Wg. ga, fitness evaluation e, time
generation and function counts for the current run of GAs

End Genetic algorithms
ASA Procedure  Start

Inputs : Start point © Waga

Output : GA ASA best weights are denotes as Waa.asa

Initialize : Set the bounded constraints, iterations and other
parameters in 6optimsetd.

Terminate : ASA stops for any of the  conditions meet: OFitness e O 1M,
Iterations =10 00, Tol X O2,1(olFun =TolCon) O 1@ andMaxFunEvals
O 20Q00.

While ( Required termination satisfied)
Fithess evaluation : Calculate fitness value e ofeach Wof P by using
equations (5 ) to (7)
Adjustments : Us e fmincon 6 wi t h O6éastt ®e me ttdhtane W and
Compute fitness value again by using equations( 5) to (7) .
Accumulate : Store the values of weight vector Weanasa fithess e, time ,
number of generations and function counts for the saidrun of ASA

ASA Procedure End

Data Generations
Repeat 100 times the GA - ASA process to get an enormousdata - setofthe
optimization variables of ANNs to solve third order singular model (1)
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Figure 2. ANN architecture fononlinear third order singular Emden Fowler model

Stability of proposed stochastic solver ANBA-ASA based on neural networks with arbitrary
weights, that dependent on number of neurons in the hidden layers, is caairdg out with the

help of two procedures, i.e., theoretical analysis and stochastic analysis. In theoretical analysis,
appropriate global and local conditions are derived generally with the help of problem specific
Lyapunov functions§9-61] while in sbchastic analysis, Mori€arlo simulation are conducted

with different set of the parameters of the neural networks and results of statistical observations
are used to evaluate the stabil®2{64].

3. Performance measures
Theperformanceneasuresf MAD, NSEandTIC are incorporated for the analysisthis study

The mathematicaexpression oMAD, TIC andNSE by means othe exacttrue solutiony and
approximatécalculatedsolution ¥ areprovidedbelow:

1.0 <
MAD= =3 |y, - %) (10)
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4. Resultsand discussions

The detailed result®f proposed ANNGA-ASA along with necessary interpretation is presented

for five casesf nonlinear singulaEmdenFowler system(1) in this sectionThe stability of the
proposed stochastic solver ANGIA-ASA based on neural networks is evaluated on sisich
analysis which is performed on 100 independent runs of AMNASA to solve nonlinear muki
singular third order EmdeRowler equations. Additionally, the accuracy, convergence, stability
and robustness of the proposed stochastic solver-&RMNSA is examined with the help of
statistical observations on different performance metrics, MAD, TIC, ENSE and their global
variants GMAD, GTIC, and GENSE based on 100 number of independent runs of the solver. The
five cases of thaonlinear singular EmdeRowlersystem (1) are narrated as follows.

Case I: Consider the nonlinear EmdenFowler equation by putting p=1 and

f(t)g(y) = %(t6 8) y °in equation (1)then we have:

32 0 9 )
yih i § @ #)y°® o=
& 30§ s

y(0)=1, vi(0) =0,y (O} £

The exadtrueform of the solution o{14)is+/1+t* and thditnesgerrorfunctionfor (14)is given
below:

-S4 (8500 w0yR) 9,6, oy E ey Eo(w)*E)) oo

Case II: Consider the third order EmdeRowler model by using=2and
f(t)g(y)= 9(3t° ®X® 4)yin equation (1}hen, we have
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The exadtruesolutionof the equation (16s € and the fitness/error function of above equation
is given below:

e= LA (CHG wyl) iay(®) 9@ 108, T
1/, = 2 =
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Case lll: Using p=3and f(t)g(y)= 6(10 2 &R )X¥in equation (1).The nonlinear
EmdenFowler equatiortakes the form as

(17)
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The exadtruesolutionof the equation (28is log(1+t*)and thefitness formulation of above case
is written as:

e:_a (t WG, ety iGy(th) 6£ (10 2% a°¥ 3E)2
m=1 (29
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Case lV: Takep=4,g(y)=y" and f(t)=1in equation (1)usingm=0. The LaneEmden
equation(1) becomesn this caseas

a8 o

Vit § 0 *I—Eaey(g y" 0=
(20)

y(0)=1, vi(0) =0, y (O) ®

Thetruesolutionof themodel(20) is 1- giots and error function becomes:
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CaseV: By taking p=4and g(y)= {10 *02 )y in equation (1) The EmderFowler
equationtakes the form as

yi(ﬁ)-ﬁ'%? g(t) {(t% > 18)y O0,=

(22)
y(0)=1 yi(0) =0, y (0) €
Thetruesolutionof the equatior23) is e"and error function becomes as:
e= A (LB 4yvE) 1500 18, €y H(w B (u) +Ex)) 23

m=1

Optimization is performed forllafive casesof EmdenFowler equatiorfor the trained inputs

between 0 and 1 with step Oby the hybrid procedureGA-ASA for 100 independentrails.
Optimizedweightsof ANNSs for each case of the system are presented in Fig. 3 and these weights
presented in subfigures 3(a), 3(b), 3(c), 3(d) and 8@)be used in equation 4 to find the
approximate results of proposed ANBA-ASA in the trained interval [0, Xpr solving cases 1,

2, 3, 4, and 5 ofhenonlinear singular EmdeRowler system (1), respectivelyhe solutions of

proposed ANNGA-ASA are determlned using weight in Fig. 3 in (4) for both trained input grid,

. e. ., [0. 0.1, 0.2[0é051]0abll, téstOng5] npud mge
4(a), 4(b), 4(c), 4(d) and 4(long with the rierence exact solutions foase 1, 2, 3, 4, and &f
EmdenFowler systen{l), respectively

The results of ANNGA-ASA are consistently overlappingittv exact solution for both training

and testing points for each casdlt systemin order to show the level of precision achieved, the
values of absolute error (AE) from reference exact solutions are determined for both training and
testing input grideind results are presented in Fig. 5 on degarithmic scale. The absolute error

plots are shown in Fig 5(a), 5(b), 5(c), 5(d) and 5(e) of proposed-GNMSA for nonlinear

third order Emderi-owler equation for all respective five cases. The value oligsHn the range

1009 to 1006, 1006 to 1004, 1005 to 1007, 1009 to 1007 and 1Gvs to 1009 for both train and test

points of cases 1, 2, 3, 4 and 5, respectively. No noticeable difference exists between training and
testing results established therth of the ANNGA-ASA for solving EmderFowler equation

Hundred trials of ANNGA-ASA are conducted for finding the solutionErhdenFowler equation

(1) for all five cases. The best solutions with minimum value of error based fitness, mean solutions
andreference exact results are plotted in Fig. 6 for all five cases of mod#li€l§lear from all

five subfigures 6(ap(e) that the best and mean soluisoare overlapped with the traelutiors

for all cases. The comparison of the performance is conducted on the basis of best, worst and mean
values of the absolute error from all 100 independent executions of propose(GGAMSA and

results are presented in Figwhich have five subfigurand Table 2 for all five variation of
EmdenFowler systengl).
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Additionally, the values operformances metrics MAD, TIC and ENSE are calculatedést,
worst and mean values of the absolute error from all 100 independent executions of proposed
ANN-GA-ASA andresults are presented in Figf@ all five variations of nonlinear third order

Emden
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their comparisorwith exactresults for alfive cases
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Figure 7: The bestmeanand worstvalues ofabsolute errofor theproposed ANNGA-ASA for
all five cases

One may observe from results presented in Fig. 7 and Table 3 thatldles of AE lie around
1006 to 1007, 1004 to 1005, 1006 t0 1008, 1006 to 100sand 1Qv7 to 1009 for the best solution for
cases 1 to 5, respectively, while respective average valué8.@t® 1003, 1001to 1002, 1002to
1003, 1002to 1004 and 1Mato 100s. The statistical analysis presented in the terms of minimum
(Min), mean Mean) and standard deviationQBin Table 2 show that Min values lie in the ranges



of [10.07, 100g] for case 1, [1@s, 100¢] for case 2, [1@e, 100g] for case 3, [1@s, 1010] for case 4
and [1007, 1009] for case 5, whereas, theean values mostlye in the ranges of [1&, 1003] but

in some cases range [d) 1006] as well. Moreover, the[3values in small ranges for all the cases
These resultiurtherendorsed the consistent reasonable precdfiafi three performance metrics
MAD, TIC and ENSE for proposediNN-GA-ASA.
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Figure 8 The MAD, TIC and ENSE values of the performamadicesfor the proposed ANN
GA-ASA for all five cases



Table 2: Statistics results fall cases of singular model

Case 1 Case 2 Case 3 Case 4 Case 5

Min Mean STD Min Mean STD Min Mean STD Min Mean STD Min Mean STD

n 3.2E08 1.3E03 6.8E03 4.0E06 1.3E01 2.8E01 1.7E07 1.0E02 5.3E02 1.5E10 9.6E06 6.6E05 6.6E08 2.4E04 1.5E03
0.1 1.1E08 1.6E03 7.8E03 1.4E05 1.7E01 2.9E01 2.6E07 1.0E02 5.4E02 2.9E08 2.1E05 6.3E05 1.1E07 4.6E04 3.1E03
0.2 2.1E07 2.1E03 9.3E03 9.0E06 2.2E01 3.4E01 9.3E06 1.1E02 5.4E02 7.9E08 2.7E05 7.5E05 4.7E08 1.4E03 9.2E03
0.3 6.0E08 2.5E03 1.1E02 3.6E06 2.5E01 3.8E01 9.2E06 1.0E02 5.3E02 6.7E08 3.0E05 9.0E05 2.1E09 2.4E03 1.5E02
0.4 5.1E08 2.9E03 1.3E02 2.1E06 2.9E01 4.2E01 8.7E06 9.6E03 5.0E02 5.0E08 3.1E05 1.0E04 1.7E08 3.3E03 2.1E02
0.5 2.2E07 3.2E03 1.4E02 1.5E06 3.2E01 4.7E01 7.4E06 8.5E03 4.6E02 5.3E08 3.2E05 1.1E04 8.5E08 4.4E03 2.8E02
0.6 2.7E07 3.4E03 1.5E02 8.1E06 3.6E01 5.3E01 5.5E06 7.0E03 3.9E02 6.5E08 3.1E05 1.1E04 2.5E08 5.4E03 3.4E02
0.7 3.7E07 3.4E03 1.6E02 4.7E06 4.2E01 6.2E01 3.1E06 5.0E03 3.0E02 6.6E08 3.1E05 1.1E04 2.0E08 6.5E03 4.1E02
0.8 2.3E07 3.2E03 1.6E02 9.1E06 5.0E01 7.4E01 4.1E08 2.9E03 2.0E02 3.6E08 3.0E05 1.0E04 7.8E08 8.2E03 5.3E02
0.9 1.3E08 3.0E03 1.6E02 1.1E05 6.3E01 9.3E01 9.2E07 1.6E03 1.0E02 5.9E08 3.0E05 1.0E04 7.6E08 1.0E02 6.7E02
1 2.3E07 2.9E03 1.5E02 1.3E05 8.2E01 1.2E+0(4.1E06 1.8E03 6.4E03 3.0E08 3.0E05 1.0E04 2.8E07 1.2E02 8.3E02

Analysis on the performance of ANBA-ASA is further examined on the basis of histograms
studies. The values of the fitness, MAD, TIC and ENSE are illustrated graphically in Figs 9, 10,
11 and 12, respectively. The presented results show that respdétdeTIC and ENSEvalues

for cases 1 to fie around10o6 to 1008, 1004 to 1006, 10.04t0 1006, 1006 to 1008 and 1005 to

1007, 1010t0 1012, 1008 t0 1010, 1008 to 1009, 1011 t01012and 1012 to 1014, 1009 to 1010, 1009

to 1010, 10112 t0 1012, and1013to 1015 Themean values of MAD lie arount.o2 to 1004, 1002

to 1004, 1002 to 1003, 1002 t010o04, and 1001 to 1003. The histogram plotted for all four
performance measure show the consisivergencand precision of ANNGA-AS on the basis of
fithess TIC, MAD and ENSE

The results of global performance operators, I&IT, GMAD, GTIC and GENSEbeing the
average values ditness, MAD, TIC and ENSEfor 100 executios of ANN-GA-ASA are
tabulated in Table tr all five case®sf third order nonlinear Emdeffowler model The magnitude
(Mag) and D of these global operators showeasonable precisidor all four global staistical
operators [GFIT, GMAD, GTIC, GENSHE)r each scenario of the problem

Table 3 Global performance results fal five cases

Index Cases GFIT GMAD GTIC GENSE
Mag S.D Mag S.D Mag S.D Mag S.D
X 1 9.4E05 6.6E04 2.7E03 1.2E02 6.1E07 3.6E06 2.2E04 1.2E03
2 4.2E02 9.2E02 3.7E01 55E01 5.2E05 8.9E05 1.0E+00 1.6E+00
3 2.0E03 13E02 7.1E03 3.7E02 2806 2.3E05 1.1E02 7.8E02
4 3.7E06 1.6E05 2.8E05 9.0E05 4.3E09 17608 3.2E06 1.7E05
5 75E05 4.8E04 50E03 3.2E02 59E07 3.9E06 15E02 1.4E01
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Figure 12 The comparison on ENSE values through histogram studies for the proposed ANN
GA-ASA for all five cases






