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Abstract

The ability to uniquely identify all nodes in a network based on network distances has proven to

be highly beneficial despite the computational challenges involved in discovering minimal resolving sets

within an interconnection network. A subset R of vertices of a graph G is referred to as a resolving set of

the graph if each node can be uniquely identified by its distance code with respect to R, with its minimal

cardinality defining the metric dimension of G. Similarly, a resolving set F ⊆ V is designated as a fault-

tolerant resolving set if F \ {s} serves as a resolving set for each s ∈ F . The minimum cardinality of F

represents the fault-tolerant metric dimension of G. Although determining the precise metric dimension

of a given graph remains challenging, various effective techniques and meaningful constraints have been

developed for different graph families. However, no notable technique has been developed to find fault-

tolerant metric dimension of a given graph. Recently, Prabhu et al. have shown that each twin vertex

of G belongs to every fault-tolerant resolving set of G. Consequently, the fault-tolerant metric dimension

is equal to the order of the graph G if and only if each vertex of G is a twin vertex, a characterization

proved in [Appl. Math. Comput. 420 (2022) 126897] corrects a wrong characterization in the literature.

It is also interesting to note from the above literature correction that the twin vertices are necessary to

form the fault-tolerant resolving set, but determining whether they are sufficient is challenging. Evidence

of this context is also discussed in this paper through the amalgamation of perfect binary trees. This

article focuses on determining the exact value of the fault-tolerant metric dimension of generalized fat

trees. For the amalgamation of perfect binary trees, both the metric dimension and fault-tolerant metric

dimension were precisely found.
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1 Introduction

Networks can be used to model various systems and phenomena, such as social networks, transportation sys-

tems, computer networks, biological networks, and many others. Graph theory provides tools and techniques

for analyzing and understanding the structure and properties of these networks. Network analysis involves

studying various properties of networks, such as connectivity, centrality, clustering, and resilience, among

others. This analysis helps in understanding the structure, behaviour, and functionality of complex systems

represented by networks.

Interconnection networks are crucial components in parallel and distributed computing systems. They

provide the infrastructure for communication among different processing elements, such as CPUs, memory

units, and I/O devices. These networks play a vital role in achieving high performance and scalability in

large-scale computing systems. Interconnection networks are fundamental in building parallel and distributed

computing systems, including supercomputers, data centers, and high-performance computing clusters. De-

signing efficient and scalable interconnection networks is essential for achieving optimal performance and

scalability in these systems.

Network verification, as considered in [1], aims to determine the minimum number of queries required to

verify all edges and non-edges of a graph with a given network. A process of verification is undertaken to

identify all edges and non-edges with endpoints at distinct distances from the query vertex v. This problem

has previously been addressed under various names, such as landmark placement in a graph or establishing

the basis of a graph [2]. According to graph-theoretic principles, the solution involves providing specific

vertex representations for each vertex in the graph, a concept extensively discussed in the literature [3–5].

The preliminaries, along with all notation used in this manuscript, definitions and figures which help to

understand the definition are given in Section 2. Also, in the same section, the problem and its overview are

presented along with the running example. In subsequent sections, we delve into the two families of network

structures: generalized fat trees (Section 3.1) and amalgamations of perfect binary trees (Section 3.2). We

continue to discuss the metric dimension and FTMD for two families in Section 4, especially the Lemma 7,

which consults that the twin vertices necessary to form a basis need not be sufficient. The discussions are

supplemented with related results and concluding remarks. The concluding remarks discussed an exciting

application of metric dimension and fault-tolerant metric dimension. Finally, the conclusion concludes with

a challenging open problem for the future researcher.

2 Preliminaries, the Problem and its Overview

Throughout the paper, all graphs are assumed to be undirected and simple. To be mathematically precise,

let us consider a connected graph G = (V,E) with vertex set V (G) and edge set E(G). For any two vertices
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s, t ∈ V (G), the distance d(s, t) is defined as the number of edges in a minimum path that connects s and t.

Given a vertex s in graph G, the open neighborhood of s, denoted as NG(s), collects all vertices t in V (G)

such that st ∈ E(G). On the other hand, the closed neighborhood of s, denoted as NG[s], encompasses NG(s)

as well as the vertex s itself. If NG[s] = NG[t], then two distinct vertices s, t are referred to as adjacent twins,

and when NG(s) = NG(t), they are named as non-adjacent twins. If vertices s and t exist such that s and t

are twins, then s is designated as a twin vertex for t. When each pair of vertices s, t ∈ T are twins, the set T

is identified as a twin set of G. See Figure 1.

s t

x1 x2 x3 x4 x5 x6

(a)

s t

x1 x2 x3 x4 x5 x6

(b)

T1

T2
x1 x2 x3 x4 x5 x6

u v w

(c)

Figure 1: (a) Non-adjacent twins (NG(s) = NG(t) = {x1, x2, x3, x4, x5, x6}); (b) Adjacent twins (NG[s] =

NG[t] = {x1, x2, x3, x4, x5, x6, s, t}); (c) Twin sets T1 and T2 (T1 = NG(xi) = NG(xj) = {u, v, w} for every

xi, xj ∈ T2 and T2 = NG(u) = NG(v) = NG(w) = {x1, x2, x3, x4, x5, x6})

Resolving sets offer a solution for locating the source of diffusion within a network. For instance, iden-

tifying the origin of a disease spreading across a population could prove invaluable in various scenarios.

While resolving sets offer a direct solution when inter-node distances and the initial spread time are known,

the concept of resolvability must be expanded to accommodate arbitrary start times and irregular nodal

transmission delays.

For a subset of vertices R = {r1, r2, . . . , rk} ⊆ V (G), the code or representation of a vertex s ∈ V (G)

with respect to R is defined as the k-vector

CR(s) =
(
d(s, r1), d(s, r2), . . . , d(s, rk)

)
,

where d(s, t) represents the distance between the vertices s and t. The set R is called a resolving set for G if,

for every pair of distinct vertices x and y in V (G), the codes CR(x) and CR(y) are distinct. In other words,

R is a resolving set for G if, for every x and y in V (G), there exists a vertex u ∈ R such that d(x, u) 6= d(y, u).

Refer to Figure 2(a). Among all possible resolving sets for G, those with the minimum size are of interest,

called basis. The cardinality of a minimum size resolving set is called the metric dimension of G, denoted

by dim(G). Table 1 summarises the notations required and discussed in this paper.

Chartrand and Zhang introduced the idea of using basis elements as sensors [6]. In this approach, sensor

failures due to defects can lead to the system’s inability to detect events like intrusion or disruption. The

concept of a fault-tolerant basis addresses this issue by presuming that a malfunctioning sensor won’t cause

overall system failure, as the other sensors can manage the intruder. Consequently, the fault-tolerant metric
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dimension exhibits a similar range of diversity as the classical metric dimension. For more insights on

implementing fault-tolerance in resolvability and its mathematical properties, readers can refer to [7–9].

A fault-tolerant resolving set is defined as a subset of vertices F , where for every element s ∈ F , the

set F \ {s} functions as a resolving set for the graph G. In simpler terms, for any pair of distinct vertices

x, y ∈ V (G), a fault-tolerant resolving set ensures the existence of two vertices u, v ∈ F such that d(u, x) 6=

d(u, y) and d(v, x) 6= d(v, y). For a visual representation, please refer to Figure 2(b). The size of the smallest

fault-tolerant resolving set or fault-tolerant basis is known as the Fault-Tolerant Metric Dimension (FTMD),

denoted as dim′(G).

V

R

u

x

y

(a)

F

u

x

y
v

V

(b)

Figure 2: (a) Resolving set R: Vertex u in R has distinct distances from vertices x and y, resolving them

from each other. (b) Fault-tolerant resolving set F : Vertices u and v in F independently resolve vertices x

and y.

The following Figure 3(a)-(c) respectively illustrates an example for resolving set, basis and fault-tolerant

basis. In particular, Figure 3(a) depicts the resolving set R1 = {v5, v6, v3}, which is not a basis (since it

is not a minimum resolving set). We claim this R1 as a resolving set due to the distinct representations

represented as follows: CR1
(v1) = (3, 2, 2), CR1

(v2) = (3, 2, 1), CR1
(v7) = (2, 1, 2), and CR1

(v4) = (1, 2, 1).

Figure 3(b) depicts the minimum resolving set R2 = {v1, v2}, the representation of other vertices with

respect to R2 are given by CR2(v3) = (2, 1), CR2(v4) = (3, 2), CR2(v5) = (3, 3), CR2(v6) = (2, 2), and

CR2
(v7) = (1, 2). Due to the argument in [2], which says that the dim(G) = 1 if and only if G is a path,

one cannot resolve this graph with less than two vertices as this graph is not isomorphic to the path. The

last Figure 3(c) depicts the fault-tolerant basis R3 = {v1, v2, v7}. It is evident that the set R3 r {v1}

gives the representation of the other vertices in the graphs as CR3r{v1}(v3) = (1, 2), CR3r{v1}(v4) = (2, 3),

CR3r{v1}(v5) = (3, 2), CR3r{v1}(v6) = (2, 1), and CR3r{v1}(v1) = (1, 1). Similarly, the set R3r{v2} gives the

representation as CR3r{v2}(v3) = (2, 2), CR3r{v2}(v4) = (3, 3), CR3r{v2}(v5) = (3, 2), CR3r{v2}(v6) = (2, 1),

and CR3r{v2}(v2) = (1, 2), and lastly, the set R3 r {v7} gives the representation as CR3r{v7}(v3) = (2, 1),

CR3r{v7}(v4) = (3, 2), CR3r{v7}(v5) = (3, 3), CR3r{v7}(v6) = (2, 2), and CR3r{v7}(v7) = (1, 2). It is to be

noted that, in all three cases, R3 r {v1}, R3 r {v2}, and R3 r {v7} the other vertices are represented by a

unique vector. Therefore, R3 is a fault-tolerant basis.
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Figure 3: (a) Resolving set; (b) Basis; (c) Fault-tolerant basis

Table 1: Nomenclature

Notations Description

V (G) Vertex set of G

E(G) Edge set of G

d(s, t) Distance between two vertices s and t

NG(s) Open neighborhood of s

NG[s] Closed neighborhood of s

FTMD Fault-tolerant metric dimension

dim(G) Metric dimension of G

dim′(G) Fault-tolerant metric dimension of G

CR(s) |R|-vector or the code of s with respect to the set R

The concept of locating sets was first introduced by Slater [4, 5], who was motivated by how it could be

used to insert a few sonar-detecting devices in a network while enabling the position of each vertex to be

uniquely identified. He used the terms reference set and location number to describe the minimum resolving

set and its cardinality, respectively. This idea was independently found by Harary and Melter, who chose

to employ the term metric dimension in lieu of location number [3]. In a subsequent study, Khuller et al.

used the word metric dimension to describe these ideas that they independently developed. These ideas were

re-investigated by Chartrand et al. [10] and Johnson [11], who were working to build a tool that could handle

huge quantities of chemical graphs.

In [2], the problem of finding metric dimension is classified as NP-hard problem for the general graph.

It remains NP-complete when restricted to bipartite graphs [12]. It also remains NP-complete even when

restricted to planar graphs (including those of bounded degree) [13], split, cobipartite, and line graphs of

bipartite graphs [14], directed graphs [15] and permutation graphs or interval graphs [16].

Resolving sets has various uses in tackling problems such as geometrical routing protocols [17], robot

navigation, pattern recognition, and image processing [2], network discovery and verification [1], coin weighing
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problems [18] and connected joins in graphs [19]. Generalized Petersen graphs [20], trees [2], Benes networks

[12], enhanced hypercubes [21], honeycomb networks [22], and Illiac networks [23], have all been researched

for this problem. Characterization of some graphs with metric dimension two was discussed in [24]. Very

recently, k-metric dimension of graphs [25], resolving power domination number of PNN [26], dominant local

metric dimension of corona product graphs [27], local multiset dimension of amalgamation graphs [28], local

metric dimension of specific types of circulant networks [29], irregular convex triangular networks [30] have

been determined.

Hernando et al. developed the idea of FTMD [31]. Javaid et al. rediscovered the same concept of

fault-tolerant resolvability in [7]. This problem is investigated for grids [32], circulant graphs [33], square of

grids [34], hollow coronoid structure [35], Möbius ladder [36] and convex polytopes [37]. Recently, Prabhu

et al. in [38] reinvestigated this fault-tolerant resolvability for multistage interconnection networks that were

wrongly computed in [39]. In [40], the fractal cubic network is redefined, and the metric and fault-tolerant

metric dimensions are determined.

3 Parallel Interconnection Networks

Interconnection networks play a vital role in facilitating effective communication across processors in a par-

allel computing system [41]. Two primary methods for connecting these processors are a static high-speed

interconnection network and a dynamic interconnection network. High-speed refers to a singular CPU, mem-

ory module, or a collection of processors. The objective of high-speed computer networks is to provide rapid

and effective communication between nodes. The infrastructure facilitates the transmission of large amounts

of data with little delay. Static connectivity networks are immovable. A unidirectional static interconnection

network is a type of network where the connections between nodes only enable communication in one way.

Data can be sent from one node to another, but not in the opposite direction. In a bidirectional static

interconnection network, nodes are connected in a way that enables communication to occur in both ways.

The selection between either connection is contingent upon the unique demands of the parallel computing

system. In contrast to a static interconnection network (fixed interconnection network), which has perma-

nent connections between nodes, a dynamic interconnection network allows for flexible reconfiguration to

accommodate changing communication needs. In this paper, we discuss two fixed interconnection networks

called generalized fat trees and the amalgamation of perfect binary trees.

3.1 Generalized Fat Trees

In order to balance traffic flows among the available links and lower the likelihood of congestion, multi-

path routing methods can use the fat tree, which provides many shortest-path routes between any pair of end

nodes. In high-performance interconnection networks, fat-tree is one of the most widely used topologies, with

the goals of low latency, effective group communication, and scalability. From a commercial standpoint, the
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mesh and hypercube topologies are two of these interconnection networks’ most well-liked networks. Despite

being an effective network due to its symmetry, regularity, logarithmic diameter, modularity, and high fault

tolerance [42], since the node degree of the hypercube is not constant, there are issues with packing and wire-

ability for VLSI implementation. A network with a constant node degree can be found in many scientific

and engineering issues, including matrix problems, image processing algorithms, and multi-grid methods [43].

Mesh networks are of this kind but have the disadvantage of higher diameter and a lower edge bisection [44].

A good interconnection network needs to have a low node degree, according to [45]. Consequently, a new

class of network called generalized fat trees, developed in [46], encompasses various specific instances, such

as the fat trees utilized in the pruned butterflies, the CM-5 connection machine architecture, and various

other fat trees proposed in the existing literature. This architecture gives designers and analysts of fat tree-

based architectures a formal, overarching notion to work with. Leiserson suggested that these networks are

hardware efficient [47]. The KSR-1 parallel machine was developed by Kendall Square Research [48]. In [49],

an alternative fat tree topology known as the pruned butterfly is proposed, while [50] provides an informal

description of more variations. In these topologies, the expansion of channel bandwidth is altered from the

initial fat trees in [47]. Now, let us formally recall the definition of the generalized p-ary fat tree.

For a generalized p-ary fat tree GFT (l, p, q), the vertex set V (GFT (l, p, q)) = {xk
hm

: 0 ≤ h ≤ l, 1 ≤ k ≤

pl−h, 1 ≤ m ≤ qh}, where m is the location of the vertex in the sub-fat tree of level h, k is the location of

copies of level h sub-fat trees, and h is the specific level.

A generalized p-ary fat tree GFT (l + 1, p, q) is recursively constructed from p copies of GFT (l, p, q),

as GFT k(l, p, q) = G(V k
l , Ek

l ), 1 ≤ k ≤ p, and ql+1 extra nodes are introduced, with the condition that

each upper-level node xk
lm

, for 1 ≤ m ≤ ql, is connected to a sequence of q newly added upper-level nodes

consecutively, given by x1
l(m−1)q+1

, x1
l(m−1)q+2

, . . . , x1
l(m−1)q+(q−1)

, x1
lmq

. The vertex set V (GFT (0, p, q)) = {x1
01}

and E(GFT (0, p, q)) = ∅. The graph GFT k(l, p, q) is a sub-fat tree of GFT (l + 1, p, q). See Figures 4 and 5.

In the fat tree architecture, the leaf nodes contain the processing components, and the intermediate nodes

act as switches or routers. As a result, GFT (l, p, q) comprises pl processors at the leaf level and routers or

switching nodes at non-leaf levels. Leaf nodes are considered to be in level 0. Every non-root has q parent

nodes, while every non-leaf has p children. The level of a vertex s is h if we have a vertex t of level 0 with

d(s, t) = h. It’s evident that a GFT (l, p, q) structure incorporates pl−h sub-fat trees GFT (h, p, q), where

1 ≤ h ≤ l. These sub-fat trees are labeled as GFT j(h, p, q), with 1 ≤ j ≤ pl−h, and they collectively contain

pl−h · qh vertices positioned at level h.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a) GFT (2, 2, 3); (b) GFT (2, 3, 3); (c) GFT (2, 4, 1); (d) GFT (2, 4, 2); (e) GFT (2, 4, 3); (f)

GFT (2, 4, 4)

(a)

(b)

Figure 5: (a) GFT (2, 3, 2); (b) GFT (3, 3, 2)
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3.2 Amalgamation of Perfect Binary Trees

Exploring perfect binary trees provides valuable insights into fundamental principles of data structures, algo-

rithmic design, and the analysis of computational complexity. In databases or search structures, combining

index trees or search trees through amalgamation can lead to faster query processing times by reducing the

number of tree traversal operations required. In parallel or distributed computing environments, merging

trees can facilitate the efficient aggregation of partial computation results from multiple processing units

or distributed systems. The purpose of tree amalgamation is to streamline data representation, improve

algorithmic efficiency, and facilitate more effective processing of tree-like structures in various computational

tasks. Depending on the specific algorithms or operations being performed on the perfect binary trees,

amalgamating the leaf nodes could simplify or optimize certain computations. For example, if the trees are

being used in search or traversal algorithms, combining leaf nodes could reduce the number of comparisons

or operations needed. Now, let us formally recall the definition of the binary tree and perfect binary tree.

A binary tree is described as a tree with only one vertex of degree two, the root vertex, with all other

vertices being either one or three in degree. Any binary tree that has all of its leaves at the same level or

within a uniform distance from the root vertex is said to be a perfect binary tree. This tree has 2l+1 − 1

vertices where l is the height of the tree.

Level 0

Level 1

Level 2

Level 3
(1,1) (2,1) (3,1) (4,1)(1,1) (2,1) (3,1) (4,1)

(1,2) (2,2) (3,2) (4,2) (1,3) (2,3) (3,3) (4,3)

(1,4) (2,4) (3,4) (4,4) (1,5) (2,5) (3,5) (4,5) (1,6) (2,6) (3,6) (4,6) (1,7) (2,7) (3,7) (4,7)

8 9 10 11 12 13 14 15

Figure 6: AT (3, 4)

In this subsection, we introduce a new architecture called the amalgamation of perfect binary tree and

list a few of its topological properties. An amalgamation tree AT (l, w) is obtained from w copies of perfect

binary trees of height l by identifying the corresponding leaf vertices. We shall call these leaf vertices as

vertices of amalgamation. Each copy is denoted by T l
i , 1 ≤ i ≤ w. AT (l, 1) is just a perfect binary tree of

height l. AT (l, 2) is called a diamond tree in the literature. As in the generalized fat trees, leaf vertices are

at level 0. A vertex of level h is at a distance h from a descendent leaf vertex. We propose a labeling of
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vertices of AT (l, w) using the labeling of the vertices of the perfect binary tree. Let V (AT (l, w)) = {(i, j) :

1 ≤ i ≤ w, 2l−h ≤ j ≤ 2l−h+1 − 1, 1 ≤ h ≤ l} ∪ {2l, 2l + 1, . . . , 2l + (2l − 1)}. In the ordered pair (i, j), the

first component i refers to the i-th perfect binary tree T l
i and the second component j denotes the label of a

vertex in T l
i . For every 1 ≤ i ≤ w, we fix Bi = {(i, t) : 1 ≤ t ≤ 2l − 1}. See Figure 6.

4 Main Results

The following lemmas were proved in different articles. Though these lemmas explain the necessary vertices

to form a basis and fault-tolerant basis, sometimes these vertices may not be sufficient to form a basis and

fault-tolerant basis. For example, the authors can see the basis of the probabilistic neural network (PNN)

discussed in [26]. In PNN, the necessary vertices are not sufficient to form a basis.

Lemma 1. [51] Let T1,T2, . . . ,Tn be the twin sets of G, then dim(G) ≥
∑n

i=1 |Ti| − n.

Lemma 2. [38] If F is a fault-tolerant resolving set of G, and t has a twin in G, then t ∈ F . Moreover, if

S is the union of all twin sets in G, then it follows that dim′(G) ≥ |S|.

Theorem 3. [52] dim(GFT (l, p, q)) = (p− 1)pl−1 + (q − 1)ql−1 where p, q ≥ 2 and l ≥ 2.

Now, we discuss the fault-tolerant resolving number of generalized fat trees. For convenience, let us denote

the vertices of level 0 by TA and that of level l by TB .

Remark. The sets TA and TB can be partitioned into TAi
and TBj

where

TAi = {x(i−1)p+1
01

, x
(i−1)p+2
01

, . . . , x
(i−1)p+p
01

}, 1 ≤ i ≤ pl−1 and TBj = {x1
l+1(j−1)q+1

, x1
l+1(j−1)q+2

, . . . , x1
l+1(j−1)q+q

},

1 ≤ j ≤ ql−1. Also, |TAi
| = p and |TBi

| = q.

Theorem 4. dim′(GFT (l, p, q)) = pl + ql where p, q ≥ 2 and l ≥ 2.

Proof. GFT (l, p, q) contains p copies of GFT (l − 1, p, q) represented by GFT k(l − 1, p, q), 1 ≤ k ≤ p. The

number of vertices in level 0 is pl, and the number of vertices in level l is ql. It has pl−h ·qh vertices at any level

h in general, and these are the vertices in the top level of pl−h copies of GFT (h, p, q). For every pair u, v ∈ TAi ,

N(u) = N(v), which implies u and v are twins. Similarly for u, v ∈ TBj
, N(u) = N(v). Therefore, each TAi

and TBj
are twin sets. See Figure 7. By Lemma 2, dim′(GFT (l, p, q)) ≥ | ∪p

l−1

i=1 TAi

⋃
∪q

l−1

i=1 TBj
| = pl + ql.

We next claim that dim′(GFT (l, p, q)) ≤ pl + ql. Let F := TA ∪ TB and x, y ∈ V (GFT (l, p, q)) \ F .

Case 1: x and y are at level h, 0 < h < l.

Case 1.1: x = uk1

hm1
and y = uk2

hm2
, 1 ≤ m1,m2 ≤ qh, 1 ≤ k1, k2 ≤ pl−h, and k1 6= k2.

Corresponding to each vertex x = uk
hm
∈ V (GFT (l, p, q)), we define a set Ax =

⋃ph−1

j=1 TA
(k−1)ph−1+j

. It

is obvious that every Ax is a subset of F and ∀s ∈ Ax, d(x, s) = h and d(y, s) > h. Similarly, ∀t ∈ Ay,

d(y, t) = h and d(x, t) > h.
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Case 1.2: x = uk1

hm1
and y = uk2

hm2
, 1 ≤ m1,m2 ≤ qh, 1 ≤ k1, k2 ≤ pl−h, k1 = k2 and m1 6= m2.

Corresponding to each vertex x = uk
hm
∈ V (GFT (l, p, q)) where h = l − 1 − i, 0 ≤ i ≤ l − 2, we define a

set Bx =
⋃qi

j=1 TB(m−1)qi+j
. It is obvious that every Bx is a subset of F and ∀s ∈ Bx, d(x, s) = l − h and

d(y, s) > l − h. Similarly, ∀t ∈ By, d(y, t) = l − h and d(x, t) > l − h.

Case 2: x and y are in different levels

Assume that x is in level h1 and y is in level h2 and h1 < h2. There exists u ∈ Ax such that d(x, u) = h1

and d(y, u) > h1. Similarly there exists v ∈ By such that d(y, v) = l − h2 and d(x, v) > l − h2.

This proves that F is a fault-tolerant resolving set.

It is worth noting that GFT (l, p, 1) and GFT (l, 1, q) are isomprphic whenever p = q.

Theorem 5. dim′(GFT (l, p, 1)) = pl.

Proof. For every i, TAi is a twin set. Therefore, by Lemma 2, dim′(GFT (l, p, 1)) ≥ pl. We next claim

that dim′(GFT (l, p, 1)) ≤ pl. To do this, we demonstrate a fault-tolerant metric basis set of cardinality pl.

Consider two vertices x, y ∈ V (GFT (l, p, 1)) \ F .

Case 1: x and y are level h vertices, 0 < h < l.

In this case, x = uk1

hm
and y = uk2

hm
, m = 1, 1 ≤ k1, k2 ≤ pl−h, and k1 6= k2.

We define a set Ax :=
⋃ph−1

j=1 TA
(k−1)ph−1+j

for each corresponding vertex x = uk
hm
∈ V (GFT (l, p, 1)). It

is obvious that every Ax is a subset of F and ∀s ∈ Ax, d(x, s) = h and d(y, s) > h. Similarly, ∀t ∈ Ay,

d(y, t) = h and d(x, t) > h.

Case 2: x and y are in different levels

Let’s assume that x is in level h1 and y is in level h2 and h1 < h2. There exists u ∈ Ax such that d(x, u) = h1

and d(y, u) > h1. Similarly there exists v ∈ Ay such that d(y, v) = h2 and d(x, v) 6= h2.

This proves that F is a fault-tolerant resolving set and dim′(G(l, p, 1)) ≤ pl.
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Figure 7: Twin sets in GFT (l, p, q)

Theorem 6. [52] Let G be AT (l, w), w ≥ 2. Then dim(G) ≤ 2l−1 + w − 1.
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Since AT (l, 1) is isomorphic to a perfect binary tree of height l and for which the result is readily available

in [2], we state the following results for w ≥ 2.

Lemma 7. Let G be AT (l, w), w ≥ 2 and R be a resolving set of G, then R ∩ (Bi ∪Bj) 6= ∅ whenever i 6= j

and 1 ≤ i, j ≤ w.

Proof. Suppose R ∩ (Bi ∪ Bj) = ∅, then we have d(x, (i, t)) = d(x, (j, t)) for each x ∈ R and 1 ≤ t ≤ 2l − 1.

This contradicts our assumption that R is a resolving set.

Theorem 8. Let G be AT (l, w), w ≥ 2. Then dim(G) = 2l−1 + w − 1.

Proof. The vertices of amalgamation form 2l−1 twin sets with two vertices in each twin set. Lemma 1 implies

that the 2l−1 vertices, one vertex from each twin set, are necessary to form a resolving set for G. Lemma 7

guarantees that, along with the previously mentioned 2l−1 vertices, an additional w−1 vertices are required.

By utilizing Theorem 6 and the above arguments, we can conclude that dim(G) = 2l−1 + w − 1.

Continuing the computation of the metric dimension of amalgamation of perfect binary trees, we now

investigate the fault-tolerant metric dimension for this architecture.

Theorem 9. Let G be AT (l, w), w ≥ 2. Then dim′(G) = 2l + w.

Proof. As we have witnessed already, the vertices of amalgamation are twin vertices, and it follows from

Lemma 2 that any fault-tolerant metric basis of AT (l, w) must contain 2l vertices of level 0. Lemma 7 aids

in claiming that an additional w vertices are also required, which leads to affirming that dim′(G) ≥ 2l + w.

We present a fault-tolerant resolving set of cardinality 2l + w. Let F1 be the set of all vertices of level

0 and F2 = {(i, 1), 1 ≤ i ≤ w}. We claim that F = F1 ∪ F2 is a fault-tolerant resolving set for G. Let

x, y ∈ V \ F . We consider different cases depending upon whether x and y belong to the same copy of the

binary tree or different copies and whether they are in the same level or different levels. Let x = (i1, j1),

y = (i2, j2) where 1 ≤ i1, i2 ≤ w, 2l−h ≤ j1, j2 ≤ 2l−h+1 − 1, 1 ≤ h ≤ l.

Case 1: i1 = i2

Let (i1, j1) and (i2, j2) be the vertices of level h1 and h2, respectively.

Case 1.1: h1 = h2

There exists k1, k2 ∈ F1 such that d((i1, j1), k1) = h1 and d((i2, j2), k1) > h1.

d((i1, j1), k2) = h1 and d((i2, j2), k2) > h1.

Case 1.2: h1 < h2

There exists k1, k2 ∈ F1 such that d((i1, j1), k1) = h1 and d((i2, j2), k1) > h1.

d((i1, j1), k2) = h1 and d((i2, j2), k2) > h1.

Case 2: i1 6= i2

For every (i1, j1) and (i2, j2), there exists (i1, 1), (i2, 1) ∈ F2 such that d((i1, 1), (i1, j1)) < d((i1, 1), (i2, j2))

and d((i2, 1), (i1, j1)) < d((i2, 1), (i2, j2)).

12



This proves our claim that F is a fault-tolerant resolving set and thus dim′(G) ≤ 2l + w.

The above theorem shows that the fault-tolerant metric dimension increases by one for every perfect

binary tree amalgamation. Table 2, shows the numerical values of dim(AT (l, w)) and dim′(AT (l, w)). It is

evident that the amalgamation of each perfect binary tree increases the order of the graph by 2l − 1, but

both the parameters dim(AT (l, w)) and dim′(AT (l, w)) are increased by just one.

Table 2: Numerical values of dim(AT (l, w)) and dim′(AT (l, w))

l |V (AT (l, w))| dim(AT (l, w)) dim′(AT (l, w))

3 8(w + 1)− w w + 3 w + 8

4 16(w + 1)− w w + 7 w + 16

5 32(w + 1)− w w + 15 w + 32

5 Conclusion and Future Direction

The metric dimension is an intuitively straightforward concept. The application of trilateration in continuous

space and its close relationship with GPS make it suitable for locating graph nodes. The metric dimension

is important in telecommunication networks, including cable networking, fibre optics, and CCTV cameras.

The metric dimension can assist us in reducing time, labour, and cost in the aforementioned networks and

increasing their effectiveness. Additional research in this area could eventually result in a better under-

standing of the metric dimension and its application to real-world networks. The fat-tree interconnection

network is one of the topologies utilised in supercomputers because of its high bisection bandwidth and sim-

plicity of application mapping for multiple communication topologies. Most applications only need a fraction

of the connectivity that fat trees can give regarding communication topology. Fat trees are particularly

well-suited for using methods for lowering power usage since they offer several alternative paths for each

source/destination combination. In this article, we solve the FTMD of generalized fat trees. We have found

that dim′(GFT (l, p, q)) − dim(GFT (l, p, q)) = pl−1 + ql−1. We also state that the metric dimension and

FTMD for amalgamation of perfect binary trees with w ≥ 2 differ by 2l−1 + 1.

The motivation behind the problem of finding a metric basis for a network is to identify its vertices

uniquely. Thorough monitoring of each vertex is now in progress with the help of a metric basis. However,

if an intruder gains access to the network by exploiting connections between vertices (edges) rather than

directly through them, it becomes impossible to identify such an intruder. In this case, the surveillance

system fails to fulfil its purpose, and further measures are needed to secure the network. This opened up the

concept of a novel variation of metric basis known as edge metric basis. Though we have characterizations and

numerous techniques to find the metric dimension and fault-tolerant metric dimension, there is no literature

about characterization or efficient lower bounds on the edge metric dimension and fault-tolerant edge metric
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dimension of a graph. It will be a challenging open problem for future researchers to investigate edge metric

dimension and fault-tolerant edge metric dimension characterizations and lower bounds.
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