7.10. Calcular el desarrollo de Taylor de grado 2 en x=0 de la función

$$f(x) = \int_0^x te^{-t}dt,$$

y utilizarlo para calcular aproximadamente $\int_0^{0.1} te^{-t} dt$. Dar una estimación del error cometido. (1–12–1997).

7.11. Calcular el siguiente límite funcional

$$\lim_{x \to 0} \frac{1 - \cos 3x}{\sin x^2} \ (14 - 2 - 1998).$$

7.12. Calcular el límite

$$\lim_{x \to 0} \frac{\sin x - \frac{x + ax^3}{1 + bx^2}}{\ln(x+1)}$$
(2-7-1998).

- **7.13**. Usando el desarrollo de Taylor en x = 0 de $f(x) = e^x$, obtener $\sqrt[3]{e}$ con un error menor que 10^{-4} . (2–7–1998).
- **7.14**. Utiliza un desarrollo de Taylor de orden 2 de la función $f(x) = \log x$ para aproximar el valor de $\log(1,1)$. Da una estimación del error cometido.
- 7.15. Calcula los límites siguientes:

$$\begin{array}{llll} \text{(a)} & \lim_{x \to 0} \frac{x^5 - x \log(1 + x^4)}{\sin^3(x^2)} & \text{(b)} & \lim_{x \to 0} \frac{\sin^3(x^2)}{x^5 - x \log(1 + x^4)} \\ \text{(c)} & \lim_{x \to 0} \frac{[1 - \cos^2(x^2)] \sin^3(x)}{x \log(1 + x^6)} & \text{(d)} & \lim_{x \to 0} \frac{\log(1 + x^3)}{1 - \cos^3(x)} \end{array}$$

7.16. Calcula el límite siguiente utilizando desarrollos de Taylor

$$\lim_{x \to 0} \frac{\log(1+x^2)\sin(2x^4)}{x^3 \log(1+3x^3)}$$

7.17. Calcula el límite siguiente usando desarrollos de Taylor:

$$\lim_{x \to 0} \frac{2\mathrm{sen}\,x^4}{1 - \mathrm{cos}\,(x^2)}$$

VIII. Cálculo integral: funciones reales de variable real

- 8.1. Calcular las siguientes integrales definidas:
 - (a) $\int_0^1 x e^x dx$
 - (b) $\int_0^{\pi/2} \sin x dx$
 - (c) $\int_1^2 \log x dx$
 - (d) $\int_a^b x^p dx$, donde p es un número entero negativo.
- 8.2. Calcular la derivada de las siguientes funciones:

(a)
$$F(x) = \int_0^x (1+t^2)^{-3} dt$$

(b)
$$F(x) = \int_0^{x^2} (1+t^2)^{-3} dt$$

(c)
$$F(x) = \int_{x^3}^{x^2} \frac{t^6}{1+t^4} dt$$

8.3. Siendo f(x) una función continua, calcular las siguientes derivadas:

(a)
$$F(x) = \int_{x}^{\pi} f(t) dt$$

(b)
$$F(x) = \int_{x}^{\pi} x f(t) dt$$

(c)
$$F(x) = \int_{x}^{\sin x} f(t) dt$$

(d)
$$F(x) = \int_{x}^{\sin x} \log x f(t) dt$$

(e)
$$F(x) = \int_{x}^{\sin x} \log t f(t) dt$$

8.4. Hallar los extremos relativos de la función

$$F(x) = \int_0^x te^{-t}dt.$$

- **8.5**. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y periódica, de periodo T, esto es, f(x+T) = f(x) para todo número real x. Demostrar que la función definida por $F(x) = \int_{x}^{x+T} f(t) dt$ es constante.
- **8.6**. Sea $f : \mathbb{R} \to \mathbb{R}$ una función continua. Demostrar que para todo par de números reales a < b, existe un número real c satisfaciendo que a < c < b, de manera que se cumple

$$\int_{a}^{b} f(t) dt = f(c) (b - a).$$

8.7. ¿Es posible calcular $\int_0^1 \log x dx$?

- **8.8**. Halla el área de la región del plano S situada entre las gráficas de las funciones f(x) = x(x-2) y g(x) = x/2, sobre el intervalo [0,2].
- **8.9**. Halla el área del recinto limitado por las curvas de ecuaciones $y=x^3-12x$ e $y=x^2$.
- 8.10. Halla el área del recinto limitado por las curvas de ecuaciones $y=x{\rm sen}\,x$ e y=x.
- **8.11**. Halla el volumen del sólido generado al girar la región limitada por las gráficas de las curvas

$$y = x^3$$
, $x = 0$, $x = 1$,

alrededor del eje x.

8.12. Halla el volumen del sólido generado al girar la región limitada por las gráficas de las curvas

$$y = 6x - x^2, y = 0,$$

alrededor del eje y.

- **8.13**. Halla el volumen del sólido generado al girar el triángulo de vértices (1,2), (9,0), (4,5), alrededor del eje x.
- 8.14. Halla el volumen del sólido generado al girar alrededor de la recta 0=x+1, el recinto limitado por las curvas

$$y = (x+1)^{-1}, y = 0, x = 1, x = 0.$$

- 8.15. Calcular el área y el volumen de una circunferencia y una esfera de radio R.
- **8.16**. Calcular el área de una elipse de semiejes a, b.
- 8.17. Calcular el volumen de un cilindro de altura h y radio de la base r.
- 8.18. Calcular el volumen de un cono de altura h y radio de la base r.
- 8.19. Calcula la longitud de una circunferencia de radio R.
- **8.20**. Usar las reglas de trapecio y Simpson para calcular de forma aproximada las siguientes integrales con un error menor que 10^{-2} :
 - (a) $\int_0^1 e^{-x} dx$.
 - (b) $\int_0^1 x e^{-x} dx$.
 - (c) $\int_0^1 x^2 \sin x dx$.
 - (d) $\int_0^1 \left(\int_0^x \sin t dt \right) dx$.
 - (e) $\int_0^1 \sin x e^{-x} dx$.

- **8.21**. Plantea la descomposición en fracciones simples (sin necesidad de calcular las constantes) de $\frac{p(x)}{q(x)}$, donde: $p(x) = x^2 + x + x$ y $q(x) = (x^2 + 4)^3(x 7)^2(x^2 + x + 1)$.
- **8.22**. Calcula el área de la figura limitada por $xy=a^2$ y por $x+y=\frac{5}{2}a$, siendo a una constante estrictamente positiva.

IX. Cálculo integral: integración numérica e integrales impropias

9.1. Comprobar que la fórmula del trapecio es exacta para polinomios de grado 1, es decir, si f(x) es un polinomio de grado 1, entonces para todo par de números reales a < b se verifica:

$$\int_{a}^{b} f(x) dx = \frac{(b-a)}{2} (f(a) + f(b)).$$

9.2. Comprobar que la fórmula de Simpson es exacta para polinomios de grado 3, es decir, si f(x) es un polinomio de grado 3, entonces para todo par de números reales a < b se verifica:

$$\int_{a}^{b} f(x) dx = \frac{(b-a)}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right).$$

- **9.3**. Estudiar la convergencia de las siguientes integrales impropias, calculando aquellas que sean convergentes:
 - (a) $\int_{2}^{\infty} e^{2x} (2x^2 4x) dx$
 - (b) $\int_{-\infty}^{0} e^{2x} (2x^2 4x) dx$
 - (c) $\int_{1}^{\infty} x \left(1 x^4\right)^{-1} dx$
 - (d) $\int_0^{\sqrt{2}} x (x^2 1)^{-4/5} dx$
 - (e) $\int_{1/4}^{1} (\sqrt{x} 1)^{-2} dx$
 - (f) $\int_{-1}^{1} (|x|)^{-1/2} dx$
 - (h) $\int_{1}^{\infty} e^{-x} \cos x dx$
 - (i) $\int_{1}^{\infty} \frac{1}{(x^2+1)(x+1)} dx$
 - (j) $\int_0^1 \log x dx$
 - (k) $\int_{1}^{\infty} x^{-3} e^{1/x} dx$
- 9.4. Estudiar la convergencia de las siguientes integrales impropias:
 - (a) $\int_1^\infty \frac{e^{-x} \sin x}{\sqrt{x+1}} dx$
 - (b) $\int_1^\infty \frac{1-\cos x}{x^2} dx$
 - (c) $\int_{1}^{\infty} \frac{1}{e^x + 10} dx$
 - (d) $\int_1^2 \frac{1}{\sqrt{2+x-x^2}} dx$

(e)
$$\int_0^\infty \frac{1}{\sqrt{x(1+e^x)}} dx$$
(f)
$$\int_0^\infty \frac{1}{\sqrt{x(1+e^x)}} dx$$

(f)
$$\int_1^\infty \frac{1}{\sqrt{(x-1)(9-x^2)}} dx$$

X. Cálculo integral: funciones reales de varias variables

10.1. Calcular para $\Omega = [0, 1] \times [0, 3]$ las integrales

(a)
$$\iint_{\Omega} xy dx dy$$
. (b) $\iint_{\Omega} xe^y dx dy$. (c) $\iint_{\Omega} y^2 \sin x dx dy$.

10.2. Calcular las integrales dobles siguientes en los recintos que se indican:

- a) $\iint_{\Omega} y dx dy$ en $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$
- b) $\iint_{\Omega} (3y^3 + x^2) dx dy$ en $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, \}.$
- c) $\iint_{\Omega} \sqrt{xy} dx dy$ en $\Omega = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le 1, y^2 \le x \le y\}.$
- d) $\iint_{\Omega} y e^x dx dy$ en $\Omega = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 1, 0 \le x \le y^2\}.$
- e) $\iint_{\Omega} y + \log x dx dy$ en $\Omega = \{(x, y) \in \mathbb{R}^2 : 0, 5 \le x \le 1, \ x^2 \le y \le x\}.$

10.3. Calcular las integrales dobles siguientes en los recintos que a continuación se dan:

- a) $\iint_{\Omega} (4-y^2) dx dy$ en el recinto limitado por las ecuaciones $y^2 = 2x$ e $y^2 = 8-2x$.
- b) $\iint_{\Omega} (x^4 + y^2) dx dy$ en el recinto limitado por $y = x^3$ e $y = x^2$.
- c) $\iint_{\Omega} (x+y) dx dy$ en el recinto limitado por $y=x^3$ e $y=x^4$ con $-1 \le x \le 1$.
- d) $\iint_{\Omega} (3xy^2 y) dx dy$ en la región limitada por y = |x|, y = -|x| y $x \in [-1, 1]$.

10.4. Calcular la superficie de las siguientes regiones:

- a) Círculo de radio R.
- b) Elipse de semiejes a, b.
- c) La región limitada por las ecuaciones $x^2 = 4y \ v \ 2y x 4 = 0$.
- d) La región limitada por las ecuaciones x + y = 5 y xy = 6.
- e) La región limitada por las ecuaciones x = y y $x = 4y y^2$.

10.5. Calcular el volumen de los siguientes sólidos:

- a) El limitado por $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ y los planos de coordenadas.
- b) El tronco limitado superiormente por z=2x+3ye inferiormente por el cuadrado $[0,1]\times[0,1].$
- c) Esfera de radio R.

d) Cono de altura h y radio de la base R.

e) El tronco limitado superiormente por la ecuación z=2x+1 e inferiormente por el disco $(x-1)^2+y^2\leq 1$.

10.6. Calcular cambiando a coordenadas polares:

- a) $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^2}} \sqrt{x^2 + y^2} dx dy$.
- b) $\int_0^2 \int_0^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} dy dx$.
- c) $\int_{1/2}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2)^{3/2} dy dx$.
- d) $\int_0^{1/2} \int_0^{\sqrt{1-y^2}} xy \sqrt{x^2 + y^2} dx dy$.

10.7. Calcular para $\Omega = [0,1] \times [0,3] \times [-1,1]$ las integrales

(a) $\iiint_{\Omega} xyzdxdydz$. (b) $\iiint_{\Omega} xe^{y+z}dxdydz$. (c) $\iiint_{\Omega} y^2z^3 \operatorname{sen} xdxdydz$.

10.8. Calcular las integrales que a continuación se piden en los recintos correspondientes:

- a) $\iiint_{\Omega} (y^3 + z + x) dx dy dz$ en $\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$
- b) $\iiint_{\Omega} (y \operatorname{sen} z + x) dx dy dz \text{ en } \Omega = \{ (x, y, z) \in \mathbb{R}^3 : y \ge z \ge y^2, \ 0 \le x, y \le 1 \}.$
- c) $\iiint_{\Omega} x dx dy dz \text{ en } \Omega = \{(x, y, z) \in \mathbb{R}^3 : 1 \ge y^2 + x^2, \ 0 \le z \le 1\}.$
- d) $\iiint_{\Omega} yxzdxdydz \text{ en } \Omega = \{(x, y, z) \in \mathbb{R}^3 : -5 \le z \le y^2 + x, \ -1 \le x, y \le 1\}.$

10.9. Calcular el volumen del sólido limitado superiormente por z=1 e inferiormente por $z=\sqrt{x^2+y^2}$.

10.10. Calcular el volumen del sólido limitado superiormente por el cilindro parabólico $z = 1 - y^2$, inferiormente por el plano 2x + 3y + z + 10 = 0 y lateralmente por el cilindro circular $x^2 + y^2 + x = 0$.

10.11. Hallar el volumen del sólido limitado por los paraboloides de ecuaciones $z = 2 - x^2 - y^2$ y $z = x^2 + y^2$.

10.12. Calcular el volumen del sólido limitado superiormente por la superficie cilíndrica $x^2 + z = 4$, inferiormente por el plano x + z = 2 y lateralmente por los planos y = 0 e y = 3.

10.13. Haciendo uso de las coordenadas esféricas $x=r \sin \phi \cos \theta$, $y=r \sin \phi \sin \theta$ y $z=r \cos \phi$, calcular:

a) El volumen de una esfera de radio R.

b) $\iiint_{\Omega}(x^2+y^2+z^2)dxdydz \text{ en el recinto } \Omega=\{(x,y,z)\in\mathbb{R}^3: 1\leq x^2+y^2+z^2\leq 2\}.$

- c) El volumen del recinto del apartado (b).
- 10.14. Calcular el volumen del cuerpo limitado por las ecuaciones $z = x^2 + 4y^2$, el plano z = 0 y lateralmente por los cilindros $x = y^2$ y $x^2 = y$.
- **10.15**. Calcular $\iint_{\Omega} e^{\frac{x-y}{x+y}} dxdy$ siendo Ω el triángulo formado por los ejes de coordenadas y la recta x+y=1.
- **10.16**. Calcular el volumen comprendido entre los cilindros $z = x^2$ y $z = 4 y^2$.
- 10.17. Calcular el volumen del balón de Rugby de ecuaciones $\frac{z^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 10.18. Calcular $\iint_{\Omega} xy dx dy$ donde Ω es la región limitada por las curvas $y=2x,\ y=2x-2,\ y=x$ e y=x+1. Indicación: hacer el cambio de variable $x=u-v,\ y=2u-v.$
- 10.19. Calcular el volumen encerrado por un cilindro de radio R/2 y una esfera de radio R cuyo centro está situado en un punto de la superficie del cilindro. Indicación: hacer el cambio a coordenadas cilíndricas.
- **10.20**. Calcular

$$\iiint_{\Omega} \frac{dxdydz}{(x^2+y^2+z^2)^{3/2}},$$

donde Ω es la región limitada por las esferas $x^2 + y^2 + z^2 = a^2$ y $x^2 + y^2 + z^2 = b^2$, donde 0 < b < a. Indicación: hacer el cambio a coordenadas esféricas.

- 10.21. Coordenadas cilíndricas.
 - a) Escribe la relación entre coordenadas cartesianas y coordenadas cilíndricas: $\Phi(r,\theta,z)=\ldots$
 - b) ¿En qué rango máximo (abierto) varían r, θ y z para que Φ sea biyectiva?.
 - c) Calcula el jacobiano de Φ y calcula el valor absoluto de su determinante (este determinante lo tienes que calcular explícitamente).
 - d) Calcula el volumen del sólido $\Omega=\{(x,y,z): 16 \leq x^2+y^2 \leq 81, x \leq 0, 0 \leq z < x^2+y^2\}.$
- 10.22. Coordenadas esféricas.
 - a) Escribe la relación entre coordenadas cartesianas y coordenadas esféricas: $\Phi(r,\theta,\phi)=\dots$
 - b)¿En qué rango máximo (abierto) varían ry los ángulos θ y ϕ para que Φ sea bivectiva?.
 - c) Calcula el jacobiano de Φ y di cuál es el valor absoluto de su determinante (este determinante no hace falta que lo calcules explícitamente).
 - d) Calcula el volumen del sólido $\Omega = \{(x, y, z) : 25 \le x^2 + y^2 + z^2 \le 49, y \ge 0\}.$

- e) Calcula la integral $\iiint_{\Omega} \operatorname{sen} \left[(x^2 + y^2 + z^2)^{3/2} \right] dx dy dz$, donde Ω es el conjunto del apartado anterior.
- **10.23**. Calcula el volumen limitado por $z = x^2 + y^2$, $z = 2x^2 + 2y^2$, y = x, $y = x^2$.
- **10.24.** Dadas constantes 0 < a < b, calcula el volumen limitado por $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 + z^2 = b^2$, $x^2 + y^2 = z^2$, suponiendo además $z \ge 0$.
- **10.25**. Calcula el área de la figura limitada por $(x^2+y^2)^2=2a^2(x^2-y^2)$ con $x^2+y^2\geq a^2$.