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Abstract

This article employs the monotonicity analysis for nonnegativity to derive a class of sequential frac-
tional backward differences of Riemann-Liouville type

(
RL
a+1∇ν RL

a∇αu
)

(t) based on a certain subspace in
the parameter space (0, 1)× (0, 1). Auxiliary and restriction conditions are included in the monotonicity
results obtained in this paper and they confirm the monotonicity of the function on {a + 2, a + 3, . . .}.
A non-monotonicity result is also established based on the main conditions together with further dual
conditions, and this confirms that the main theorem is almost sharp. Furthermore, we recast the dual
conditions in a sing condition, and then we represent the sharpness result in a new corollary. Finally,
numerical results via MATLAB software are used to illustrate the main mathematical results for some
special cases.

1 Introduction

Discrete fractional calculus theory has been considered as one of the greatest discovery on applied science with
mathematical analysis and fractional calculus, attracting ever increasing attention of most of scientists and
researchers from diverse disciplines, see e.g. [1–4]. Particularly in many fields there is an increasing number
of publications which are interested on fractional sums and differences contributing to the development
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of discrete fractional operators to deal with such fields, and thereafter, numerous mechanisms facilitating
cooperative behavior, like mathematical modelling [5–7], stability analyses [8–10], uncertainty theory [11–13],
mathematical transformations [14, 15], medical models [16, 17], other mathematical models [18–20] and so
on, have been proposed by many researchers.

Analysis of discrete fractional operators for positivity or/and monotonicity is an established and active
field of research in the applied mathematical analysis and fractional calculus. Recently, several monotonicity
analysis or positivity analysis results have been developed based on different fractional difference and sum
operators defined using singular or/and nonsingular kernels, see e.g. [21–23] including standard, exponential
and Mittag-Leffler function in kernels. In particular, in the mathematical analysis and numerical computation
for both discrete Riemann-Liuoville and Caputo fractional models, a significant challenge is due to non-
singularity of their kernels, see e.g. [24–27].

On the other hands, the research work on monotonicity analysis has continued to deepen with the advance
in sequential fractional operators or mixed order fractional operators. Depending on the difference and sum
properties and auxiliary conditions, the modeling of this process is quite challenging and interesting in
the scientific community. Besides, various investigations on fundamental problems of sequential fractional
operator of Riemann-Liuoville type have lately been published, see e.g. [28–33]. However, some of these
results are sharp in the sense of the main monotonicity results. Moreover, such sharpness models have been
considered in the sense of Riemann-Liuoville operators by e.g. [34–37].

Motivated by the above considerations, the aim of this paper is to present monotonicity and non-
monotonicity analysis for the following class of sequential fractional backward differences of Riemann-
Liouville type (

RL
a+1∇ν

RL
a∇αu

)
(t), (1.1)

on Na+2 := {a + 2, a+ 3, . . .}. The sharpness of the main result is another aim of our study. Finally, some
example experiments confirm the applicability of the main theorem.

The designation of our study sections is as follows: Section 2 recalls definition of nabla Riemann-Liouville
fractional difference operator and an essential lemma concerning the backward difference formula. Next,
Section 3 contains our main results including analysis of (1.1), monotonicity, non-monotonicity analysis
results and sharpness of the function on a specific region with the auxiliary and dual conditions. Section 4
includes two example illustrations. In Section5, we summarize our proposed sequential with some concluding
remarks.

2 Necessary results

Following Theorem 2.1 in [34], we recall the following theorem.

Theorem 2.1. For u defined on Na, we have

(
RL
a+1∇ν

RL
a∇αu

)
(t) =

1

Γ(−ν − α)

t∑
s=a+1

Γ(t− ν − α− s)

Γ(t+ 1− s)
u(s)− Γ(t− a− ν − 1)

Γ(−ν)Γ(t− a)
u(a+ 1), (2.1)

for t ∈ Na+3, 1 < ν ≤ 2 and 0 < α < 1. Where RL
a∇αu is given by (see [22, Lemma 2.1]):

(
RL
a∇αu

)
(t) =

1

Γ(−α)

t∑
s=a+1

(t+ 1− s)−α−1u(s), (2.2)

for t ∈ Na+T , where α ∈ (T − 1, T ) with T ∈ N1.

Remark 2.1. It is essential in the context of discrete fractional calculus to note that tα tends to zero such
that Γ (t) becomes undefined, where

tα =
Γ (t+ α)

Γ (t)
. (2.3)
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Theorem 2.1 helps us to calculate the following lemma.

Lemma 2.1. Let
(

RL
a+1∇ν

RL
a∇αu

)
(t) ≥ 0, for all t ∈ Na+3 and each u to be defined on Na. Then the

following inequality can hold

(∇u) (a+ n) ≥
[

Γ(n− a− ν − 1)

(n− 1)!Γ(−ν)
− Γ(n− ν − α)

(n− 1)!Γ(1− ν − α)

]
u(a+ 1)

− 1

Γ(1− ν − α)

n−3∑
p=0

Γ(n− p− 1− ν − α)

Γ(n− p− 1)
(∇u) (a+ p + 2), (2.4)

for n ∈ N2, 0 < ν ≤ 1 and 0 < α < 1.

Proof. Recasting (2.1) in the following form

(
RL
a+1∇ν

RL
a∇αu

)
(t) =

[
Γ(t− a− ν − α)

Γ(t− a)Γ(1− ν − α)
− Γ(t− a− ν − 1)

Γ(t− a)Γ(−ν)

]
u(a+ 1)

+
(
∇u
)
(t) +

1

Γ(1− ν − α)

t−1∑
s=a+2

Γ(t− s + 1− ν − α)

Γ(t− s + 1)

(
∇u
)
(s).

By rearranging this equality for
(
∇u
)
(t) and using the assumption, we see that(

∇u
)
(t) =

(
RL
a+1∇ν

RL
a∇αu

)
(t)−

[
Γ(t− a− ν − α)

Γ(t− a)Γ(1− ν − α)
− Γ(t− a− ν − 1)

Γ(t− a)Γ(−ν)

]
u(a+ 1)

− 1

Γ(1− ν − α)

t−1∑
s=a+2

Γ(t− s + 1− ν − α)

Γ(t− s + 1)

(
∇u
)
(s).

Then, by changing of the variable t to a+ n, where n ∈ N3, we get the required result.

3 Main Nabla results

To show the sharpness of u in Lemma 2.1 we must prove the monotonicity of u in the following theorem.

Theorem 3.1. If u : Na → R has these four properties

(i) u(a+ 2) ≥ u(a+ 1) ≥ 0;

(ii)
(

RL
a+1∇ν

RL
a∇αu

)
(t) ≥ 0, for t ∈ Na+3, where 0 < ν, α < 1 with 1 < ν + α < 2;

(iii) ν ≥ 1− α
2 , where 0 < ν, α < 1 with 1 < ν + α < 2,

then
(
∇u
)
(t) ≥ 0, for all t ∈ Na+2.

Proof. Let’s recast inequality (2.4), where n = 3, to see that

− 1

Γ(1− ν − α)

0∑
p=0

Γ(2− p− ν − α)

Γ(2− p)
(∇u) (a+ p + 2)

= −Γ(2− ν − α)

Γ(1− ν − α)
(∇u) (a+ 2)

= − (1− ν − α)︸ ︷︷ ︸
<0

(∇u) (a+ 2)︸ ︷︷ ︸
≥0 by (ii)

≥ 0.

By the same process, we can have

− 1

Γ(1− ν − α)

n−3∑
p=0

Γ(n− p− 1− ν − α)

Γ(n− p− 1)
(∇u) (a+ p + 2) ≥ 0, (3.1)
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for each n ∈ N3. Next, our goal is by using induction to prove that

Γ(n− ν − 1)

Γ(−ν)(n− 1)!
− Γ(n− ν − α)

Γ(1− ν − α)(n− 1)!
≥ 0. (3.2)

Firstly, if n = 3 in (3.2), then our proof is holding the following inequality

Γ(2− ν)

Γ(−ν)2!
≥ Γ(3− α− ν)

Γ(1− α− ν)2!
, (3.3)

or equivalent to (3.3), we need to show that

(−ν)(1− ν) ≥ (1− α− ν)(2− α− ν). (3.4)

If we expand (3.4), then we see that our proof is holding the following inequality

3α+ 2ν − α2 − 2αν − 2 ≥ 0. (3.5)

For α = 1, (3.5) leads to

2ν − 2ν ≥ 0,

and it is clearly true. Next, for fixed α ∈ (0, 1), we can solve (3.5) for ν to have

ν ≥ α2 − 3α+ 2

2(1− α)
= 1− α

2
, (3.6)

which is true for sure by considering the condition (iii), and this is the basic step of the mathematical
induction.

In the inductive step, we suppose that (3.4) is correct for n = n0 and we claim that

Γ (3− ν + n0)

Γ(−ν)
≥ Γ (4− α− ν + n0)

Γ(−α− ν + 1)
, for some integer n0 ≥ 3. (3.7)

Look! (3.7) can be rewrite as follows

(n0 − 1− ν) (n0 − 2− ν) · · · (−ν) ≥ (n0 − α− ν) (n0 − 1− α− ν) · · · (1− α− ν). (3.8)

Our induction hypothesis (when n = n0) tells us that the following inequality holds

(n0 − 2− ν) · · · (−ν) ≥ (n0 − 1− α− ν) · · · (1− α− ν). (3.9)

It is important to observe that
min

{
n0 − 1− ν, n0 − α− ν

}
≥ 0,

and

max
{ >0︷ ︸︸ ︷

(n0 − 2− ν) · · ·
<0︷ ︸︸ ︷

(−ν),

>0︷ ︸︸ ︷
(n0 − 1− α− ν) · · ·

<0︷ ︸︸ ︷
(1− α− ν)

}
< 0.

Now, we put

C0 := (n0 − 2− ν) · · · (−ν) < 0,

D0 := (n0 − 1− α− ν) · · · (1− α− ν) < 0,

tM := n0 − α− ν > 0,

tm := n0 − 1− ν > 0.

One can observe that D0 < C0 < 0 and 0 < tm ≤ tM since α ≤ 1 from the assumption. Therefore,

tmC0 ≥ tMD0
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which tell us that (3.8) is true in view of inequality (3.9) and hence (3.7) will be true. As a result, by
induction (3.2) holds true for all n ∈ N3.

In the final step, we use (2.4) with n = 3 to get

(∇u) (a+ 3) ≥
[

Γ(2− a− ν)

2!Γ(−ν)
− Γ(3− ν − α)

2!Γ(1− ν − α)

]
u(a+ 1)

− 1

Γ(1− ν − α)

0∑
p=0

Γ(2− p− ν − α)

Γ(2− p)
(∇u) (a+ p + 2)

≥ 0,

where all of the conditions (i), (ii) and (iii) have been used. As a result,(
∇u
)
(t) ≥ 0, for each t ∈ Na+2,

by iterating (2.4) inductively and using the initial result that
(
∇u
)
(a+ 3) ≥ 0. This finishes our result.

Remark 3.1. By an assumption of Theorem 3.1, we are in need of

2 > α+ ν > 1. (3.10)

It is important to discuss the restriction

ν ≥ 1− α

2
, (3.11)

which appears in the assertion of Theorem 3.1. First, we see that

lim
α→0+

(
1− α

2

)
= 1.

This makes (3.11) tend to ν > 1 as α → 0+. However, this is really no great loss because we need (3.10).
Therefore, we can deduce that the range of ν values is only weakly affected, for α ≈ 0, while slightly truncated.

Next, we consider the case that

lim
α→1−

(
1− α

2

)
=

1

2
.

This makes (3.11) tend to ν >
1

2
as α→ 1−. Thus, an importantly less trivial restriction is imposed in this

case. Particularly, considering (3.10), if α ≈ 1, then ν ' 0. Otherwise, ν could importantly be any number

in (0, 1) without the auxiliary restriction. However, the range 0 < ν <
1

2
is disallowed with the auxiliary

restriction. Therefore, a much more substantial restriction is effected.

To begin the almost sharpness of Theorem 3.1, we need the following preliminary lemma.

Lemma 3.1. Let 1 < α + ν < 2, and conditions (i) and (ii) of Theorem 3.1 be hold and the condition (iii)
be hold for t = a+ 3. In addition, let η0 be a number such that

η0 >
α2

2
.

Then there is a function u defined on Na+1 that is not a monotone increasing function on Na+2, for all
number ν satisfying

0 < ν < 1−
(
η0 +

α

2

)
.

Proof. We need to find a function u : Na+1 → R combined with t0 ∈ Na+1 with (∇u) (t0) < 0. Without

loss of generality, we only establish the result in case a = 0. Now, assume that ν ∈
(

0, 1−
(
η0 +

α

2

))
is
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fixed. Assume that ε > 0 is a constant (sufficiently small), which will be set on later. Then we define the
function u on N3

1 by

u(1) = 1,

u(2) = ε+ 1,

u(3) = 1.

It is clear that u is not a monotone increasing function on N1 since (∇u)(3) = −ε < 0. Thus, it is enough
to prove that conditions (i)–(iii) nonetheless hold.

It is obvious that conditions (i) and (ii) hold since u(1) ≥ 0 and (∇u)(2) = ε > 0, respectively. So, it
only remains to prove that (

RL
1∇ν

RL
0∇αu

)
(a+ 3) ≥ 0. (3.12)

To prove (3.12), we observe that

(
RL
1∇ν

RL
0∇αu

)
(a+ 3) =

1

Γ(−α− ν)

3∑
s=1

Γ(t− α− ν − s)

Γ(t− s + 1)
u(s)− Γ(2− ν)

2Γ(−ν)
u(1)

=

[
(−α− ν)(−α− ν + 1)

2
+
ν(1− ν)

2

]
u(1) + (−α− ν)u(2) + u(3)

= α

(
−1

2
+

1

2
α+ ν

)
u(1) + (−α− ν)u(2) + u(3)

=

[
α

(
−1

2
+

1

2
α+ ν

)
+ (−α− ν) + 1

]
+ (−α− ν)ε, (3.13)

where the values of u(1), u(2), and u(3) are used. By making use of the supposition that ν < 1−
(
η0 +

α

2

)
we arrive at

−α− ν > −α− 1 +
(
η0 +

α

2

)
= η0 −

α

2
− 1. (3.14)

On the other hand, from our requirement α+ ν > 1, we have

ν > 1− α. (3.15)

Therefore, by simplifying the right-hand side of (3.13) and by using inequalities (3.14)–(3.15) in the resulting
inequality we find that(

RL
1∇ν

RL
0∇αu

)
(a+ 3) =

[
α

(
−1

2
+

1

2
α+ ν

)
+ (−α− ν) + 1

]
+ (−α− ν)ε (3.16)

>

[
α(1− α)

2
+ η0 −

α

2

]
+
(
η0 −

α

2
− 1
)
ε (3.17)

=

[
η0 −

α2

2

]
︸ ︷︷ ︸

>0 by assumption

+
(
η0 −

α

2
− 1
)
ε. (3.18)

By taking limits on both sides of (3.16), it follows that

lim
ε→0+

[(
RL
1∇ν

RL
0∇αu

)
(a+ 3)

]
> lim
ε→0+

{[
η0 −

α2

2

]
+

(
−1

2
α− 1 + η0

)
ε

}

= η0 −
α2

2
> 0,

which implies that
(
RL
1∇ν

RL
0∇αu

)
(a + 3) > 0 for ε > 0 small enough. Consequently, the condition (iii)

holds. Hence, the proof is done.

Remark 3.2.
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1. In the statement of Lemma 3.1, we can recast the dual conditions

η0 >
α2

2
,

ν < 1−
(
η0 +

α

2

)
,

as the following single condition

0 < ν < 1−
(
η0 +

α

2

)
< 1− α

2
− α2

2
.

Therefore, we conclude that the result of Lemma 3.1 can be hold such that we press the restriction ν <

1− α

2
− α2

2
on the space of (α, ν)−parameter.

2. It is worth mentioning that the plot of the function α 7→ 1 − α

2
lies above the plot of the function α 7→

1− α

2
− α2

2
− that is,

1− α

2
− α2

2
< 1− α

2
,

which is true for 0 ≤ α ≤ 1.

In view of Lemma 3.1 together with Remark 3.2(1), we can deduce Corollary 3.1 directly.

Corollary 3.1. Let 1 < α+ ν < 2, and conditions (i) and (ii) of Theorem 3.1 be hold and the condition (iii)
be hold for t = a+ 3. Then for all numbers α, ν ∈ (0, 1) satisfying

ν < 1− α

2
− α2

2
, (3.19)

there is a function u defined on Na+1 and it is not a monotone increasing function on Na+1.

Remark 3.3. In a particular sense as in Corollary 3.1, we can observe that Theorem 3.1 is “almost sharp”on
the subset of (0, 1)× (0, 1) for which the inequality (3.19) holds.

4 Clarification examples

We consider two examples to confirm the validity of our main Theorem 3.1.

Example 4.1. Let us consider u defined on N0 as follows:

u(t) = tν+α.

Then for ν = 0.7, α = 0.8, and t = 3, we have

(
RL
1∇ν

RL
0∇αu

)
(3) =

1

Γ(−ν − α)

3∑
s=1

(4− s)−ν−α−1u(s)− (3)−ν−1

Γ(−ν)
u(1)

= 1.4689 ≥ 0,

and for t = 4, we have

(
RL
1∇ν

RL
0∇αu

)
(4) =

1

Γ(−ν − α)

4∑
s=1

(5− s)−ν−α−1u(s)− (4)−ν−1

Γ(−ν)
u(1)

= 1.3898 ≥ 0.
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Similarly, we can deduce that (
RL
1∇ν

RL
0∇αu

)
(t) ≥ 0,

for each Na+2. Furthermore, u(1) ≥ 0 and (∇u)(2) = 1.9940 ≥ 0. Consequently, we see that tν+α is
increasing on N2 in view of Theorem 3.1. On the other hand, it has been drown in Figure 1.

1.5 2 2.5 3 3.5 4 4.5 5 5.5

t

-2

0

2

4

6

8

10

12

14

16

Figure 1: Graph of u(t) in Example 4.1.

Example 4.2. For this reason, we consider the following data

t 1 2 3 4 5

u(t) 0 1 1.5 2.2 3.5

Let ν = 0.7, α = 0.8. Then, for t = 3, t = 4 and t = 4, we have

(
RL
1∇ν

RL
0∇αu

)
(3) =

1

Γ(−ν − α)

3∑
s=1

(4− s)−ν−α−1u(s)− (3)−ν−1

Γ(−ν)
u(1)

= 0 ≥ 0,

(
RL
1∇ν

RL
0∇αu

)
(4) =

1

Γ(−ν − α)

4∑
s=1

(5− s)−ν−α−1u(s)− (4)−ν−1

Γ(−ν)
u(1)

= 0.3250 ≥ 0,

and

(
RL
1∇ν

RL
0∇αu

)
(5) =

1

Γ(−ν − α)

5∑
s=1

(6− s)−ν−α−1u(s)− (5)−ν−1

Γ(−ν)
u(1)

= 0.8250 ≥ 0,

respectively. Furthermore, u(1) = 0 ≥ 0 and
(
∇u
)
(1) = 1 ≥ 0. Hence u is a convex function on {2, 3, 4, 5}

according to Theorem 3.1.

8



5 Concluding remarks

In this contribution, we have studied the monotonicity result of discrete fractional operators determined by
a nonnegativity of a class of sequential fractional backward differences of Riemann-Liouville type(

RL
a+1∇ν

RL
a∇αu

)
(t).

Then the main conclusion of our study is as follows:

� A backward difference formula associated with the nonnegativity of the above sequential fractional
difference has been formulated in Lemma 2.1.

� The monotonicity of u on the subregion (0, 1) × (0, 1) such that 0 < ν + α < 2 with the auxiliary
restriction ν ≥ 1− α

2 has been established in Theorem 3.1.

� A non-monotonicity result has been obtained in Lemma 3.1 based on dual conditions.

� The dual conditions has been recaptured in a new single condition, and thus the sharpness of the
function has been observed in Corollary 3.1.

� Finally, to show the applicability and generality of the main theorem, we have applied the theoretical
findings to two test examples, considering and impulse strengths.
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