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Abstract: Investigation on particle synchronization behavior and different kinds of stochastic 

resonance mechanism is reported in a fractional-order stochastic coupled system, which endures an 

external periodic excitation and polynomial asymmetric dichotomous noise damping disturbance. An 

extending of the method of stochastic averaging, the fractional Shapiro-Loginov formula and fractional 

Laplace transformation law are utilized, to determine the synchronization behavior between two 

coupled oscillators. The first moment of steady-state response and the output signal amplitude of the 

system are obtained in an analytical way, along with the stability condition. The crucial role of damping 

order and intrinsic frequency in stochastic resonance induced by noise intensity is explored, confirming 

the necessity of studying damping order falling in ( )1, 2 . Due to the presence of nonlinear dichotomous 

colored noise, fresh phenomena of stochastic resonance and hypersensitive response induced by 

variation of external excitation frequency are found, where much more novel dynamical behaviors 

emerge than the non-disturbance case. It is confirmed that bimodal stochastic resonance only occurs 

for slow switching noise, with the damping order close to the parameter region of 0  or 2 . For 

parameter-induced generalized stochastic resonance, explicit expressions of the critical damping 

strength corresponding to the optimal peak point of output amplitude are derived for the first time. By 

which different stochastic resonance patterns of the system under slow and fast switching noise 

perturbation are predicted successfully. In addition, the parametric effect and action mechanism of 

damping order on stochastic resonance are discussed in detail. 

Keywords: Coupled stochastic system, Fractional order damping, Particle Synchronization behavior, 

Bona fide stochastic resonance, Generalized stochastic resonance 
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1. Introduction 

The concept of  stochastic resonance (SR) was firstly proposed to explain the spectacle that the 

cycle of  climate is consistent with that of  the eccentric angle of  the earth's revolution. Over the next 

40 years, classical SR theories such as adiabatic dynamics[1], SR adiabatic elimination[2] and residence 

time distribution theory[3] were developed. And some scholars later proposed some new stochastic 

resonance theories such as super-threshold SR[4], which has been widely applied in different fields[5]. 

The occurrence of  classical stochastic resonance must contain three essential elements, namely, system 

nonlinearity, periodic signal and random factor. While many studies have shown system nonlinearity is 

no longer a necessary condition, that SR can also occur in linear stochastic systems[6]. The difference 

is that the random factor in classical SR usually refers to additive white noise, while in linear stochastic 

system it can usually be induced by colored noise in multiplicative form[7]. 

Due to the premise that all physical quantities and dynamic evolution process can be represented 

respectively by integer-order operators and differential equations in classical mechanics category, most 

studies on SR were carried out for systems modeled by ODE. However, the integer order equation can 

only describe the instantaneous behavior at a certain moment, and the integer order operator is only a 

local quantity[8]. Based on the Markov process without aftereffect, classical stochastic resonance theory 

grounded on ordinary Langevin equation and FPE tends to be perfect gradually. However, with the 

development of  natural science and industrial technology, more and more processes with memory 

effect have been discovered in the field of  nature and engineering[9]. The current state of  the process 

is often related to all historical states in the past, and modeling of  ODE would be no longer applicable 

at this time[10]. As a non-local quantity[11], the characterization of  fractional derivative involves the 

previous development course and the influence of  non-local distribution, so it can be more accurate 

for such long-range or long-memory dependence process[12]. For instance, for soft materials which 

between elastic and viscous bodies, ( ) ( )d dt t t
 

  , 0 1   is often used to describe the 

constitutive relation of  viscoelastic materials[13]; Fractional convection-diffusion equations can be used 

to simulate some anomalous diffusion phenomena such as groundwater diffusion[14]; In some complex 

non-uniform medium environment[15], fractional derivative can be introduced to describe the memory 

damping force of  the oscillator[16]. 

    As a ubiquitous element in the real world and practical engineering systems, noise can induce many 

complex dynamic behaviors[17]. The constructive role of  noise in SR has been extensively studied and 

explored in nearly a decade. However, due to the one-sided understanding of  complex disturbances in 

many cases for the sake of  convenient modeling, linear noise is used to simulate random factors in the 

system in practical applications, which is often not accurate enough[18]. In fact, nonlinear form noises 

exist more widely in real-world systems than the linear ones, some scholar has investigated the stochastic 

resonance in a linear system subjected to multiplicative noise that is a polynomial function of  colored 

noise[19]. On the one hand, the noise in real systems is usually colored noise with limited bandwidth in 

spite of  the fact that the Gaussian white noise (GWN) is simple and widely used in varies fields[20]. In 



the previous studies on SR of  fractional order systems disturbed by color noise, most of  the 

dichotomous and trichotomous colored noises usually exhibit as multiplicative form, to describe the 

mass disturbance, inherent frequency disturbance, signal modulation noise, etc. On the other hand, the 

above papers aim at the research on SR phenomenon in uncoupled stochastic systems, while particles 

in many stochastic systems are coupled, which is also called complex networks[21]. From the 

development of  complex network in recent years and the gradual expansion of  its application in various 

fields[22], one may sneak a peek at the practical research value of  coupled stochastic fractional order 

system, and its SR related research will certainly have far-reaching significance and application value. As 

far as we know, there is no relevant reports on SR research for coupled fractional order systems with 

polynomial colored noise disturbance on fractional damping. Based on the above considerations, in this 

paper coupled fractional order systems with asymmetric dichotomous noise damping disturbances are 

considered, described as follows  
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The symbol “  ” in (1.1) represents the friction constant, and 
0, 1

D ( )
q

C t
z t  represents the 

fractional order damping, described in Caputo fractional derivative. According to the property of the 

damping materials[23], here the value of the fractional-order of a damping is selected in the interval 

( )0,2 . In fact, many important results may be lost if we ignore the fractional-order value in the interval 

( )1,2 [24]. The fractional order item in (1.1) represents the extrinsic damping and internal damping force 

produced by the oscillator itself for 0 1q   and 1 2q  , respectively. Here the fluctuation of  the 

fractional damping strength is modeled by the random telegraph process[25], a simple but important 

type of  non-white Markovian process ( )t , which has been adopted in some former works[26]. The 

polynomial function of  the dichotomous noise  
1

( ), ( )
N

k

k

kt N t  
=

 =   (with the positive integer 

2N  ) is actually responsible for the random friction of  the oscillator, under effect of  the changes in 

the nearby environment, which can be interpreted as an influx of  energy to the oscillator and its 

dissipation to the surrounding environment. As the realization of  two states Poisson process[27], in 

this paper the asymmetric dichotomous noise with two possible state values  
1 2
, −   are 

considered. The transition rate per unit of  time from 
1

  to 
2

−  is assumed as 
1

  and the 

transition rate of  the reverse direction is 
2

 , respectively. All the quantities 
1

 , 
2

− , 
1

  and 
2

  

are positive, the transition probability of  retention time at two states obeys Poisson distribution 

( )1,2 1,2 1,2exp  − . Such a random switching process can be described by the following master 

equation[28] 
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t s , with the initial condition ( ), | , x xP x t x t  
 = , Eq. (1.2) can be solved as 
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For t→  steady-state solutions of  (1.3) read 
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from (1.4) the mean value and the autocorrelation function of  ( )t  are given by 
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Let t →  in (1.5) one gets ( ) ( )2 1 1 2 1 2 0
s

    =  −  + = , inserting 2 1 1 2 0  −  =  into (1.6) 

leads to the variance ( ) ( ) ( )
2 2

1 2 1 2 1 2 1 2var     =  +  + =   . 

The transition probabilities between the two states from time s  to t  ( t s ) are given as 

follows[29] 
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for t s− →  one can obtain the stationary probabilities of  the asymmetric dichotomous process 
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With the presuppositions that statistical mean value is zero[30], i.e., 
1 2 2 1  =  , the 

autocorrelation function can be derived by (1.7) and (1.8) 
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Where 1 2 =   , 
1 2

v  = +  is the switching rate of  ( )t , the intensity of  the dichotomous noise 

is defined as, ( ) ( )
0

dD t t u u v  


= + = and the correlation time can also be calculated as
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d 1
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= + = . With the constructed equation ( )( )
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1 2
 =  −   denotes the asymmetry between the two states. 



For arbitrary integer k , the polynomial function of  ( )t  can be rewritten as  
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the subscripts ’ C ’ and ‘ 0 , t ’ in the fractional derivative symbol has been dropped for notational 

convenience.  

 Different kinds of  stochastic resonance of  system (1.11) are investigated, the major factors 

affecting the synchronous speed of  the two coupled oscillators are demonstrated from both qualitative 

and quantitative angle. By which, complexity induced by the nonlinear telegraphic noise and the 

mechanical mechanism of  synchronization and resonance regimes will be elaborated. The structure of  

this paper is as follows. In sec. II the averaging synchronization between particle 
1

z  and 
2

z  are 

demonstrated from theoretical and numerical angle, respectively. Section III is devoted to quantify the 

steady-state output amplitude and the response first moment of  the system. Based on which, in Section 

IV phenomena of  traditional SR induced by noise intensity, Bona fide SR induced by external excitation 

frequency and GSR induced by different system parameters are discussed in detail. Section V presents 

the main results and conclusions of  this paper. 

2. Synchronization behavior and verification 

 Before going into the underlying resonant behavior in the coupled oscillators described by Eq. 

(1.11), the synchronism between each particle of  (1.11) should be firstly examined, say, to verify whether 

or not the average behaviors of  
1

z  is consistent with 
2

z  in the long-time regime[31]. To this end, we 

examine the synchronization[32] by introducing the symbol of  mean field ( )
1 2

2z z z= + . 

2.1. Theoretical prediction of  synchronization 

Firstly, rewrite Eq. (1.11) in the following expression: 
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The deviations of  
k

z  ( 1, 2k = ) to z  is given by ( ) ( ) ( )
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 Calculating the summation of  the two single movement equation of  the particle in Eq. (2.1) to 

estimate that of  the mean field 
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From Eq. (2.1) and (2.2) the equivalent equations for the deviation function 
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Taking average of  the two equations in (2.3), one gets  
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k
B  can be regarded as a function of  ( )t , due to exponential correlation property of  the concerned 

random noise ( )t , the famous Shapiro-Loginov formula[33] can be explored 
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Reuse the typical formula (2.5) twice to give the corresponding averaging results for the two-order 

differential of  a function of  exponential correlation random noise: 
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the extended generalized fractional Shapiro-Loginov formulas can also be derived by Eq. (2.5) and the 

definition of  Caputo derivative, which has been utilized in Eq. (2.7) 
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The synthetic affections of  the mean-value 
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B  1, 2k = appear in (2.4), to address the new term 

and obtain both the two variables together, we should multiply Eq. (2.2) with ( )t  and conduct the 

averaging operation again to get the following equation: 
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In the calculation of  Eq. (2.8) we have used the averaging formula (2.6) and (2.7) simultaneously. The 

collection of  (2.4) and (2.8) truly consist a close linear system of  second-order differential equations 

for four variables, i.e., 
1 1

x B= , 
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x B= , 
3 1

x B=  and 
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x B= . Since the solutions in 

long-time region is where our focus should be, the stationary region where the initial conditions impact 

on the long-time limit behavior should be experientially empirically omitted. By virtue of  the Laplace 

transform technique, this equation set can be equivalently changed to the corresponding linear algebraic 

equation set in (2.9) 
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where ( ) ( ) ;
i i

X s x t s= L , 1, 2, 3, 4i = , expressions of  coefficients in Eq. (2.9) are given by
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Equations (2.9) lead to ( ) 0
i

X s = , according to the inverse Laplace transform theory, we have 

1 2
0B B= = , which reveals that the average value of  the displacement of  each particle is agreement 

with that of  the mean one. Moreover, 
1 2

z z=  and the synchronization behavior of  this two-

coupled oscillators under arbitrary order polynomial asymmetric dichotomous noise has been 

confirmed. In summary, synchronization behavior happens in the two coupled system, by which, one 

just need to estimate the single degree (e.g., 
1

z ) to investigate the overall stationary-state behavior of  

the coupled system. In next Section the synchronization will be invested to give the analysis of  the SR 

phenomenon. 

2.2. Numerical verification 

In terms of  numerical simulation scheme, there are many approximate discrete methods for the 

fractional derivative operator D
q

k
B  in Eq. (2.3). The G-L approximation approach is considered to 

be the most straightforward one from the numerical implementation point of  view, and has been widely 

adopted in problems in dealing with fractional-order issues for its simplicity in the discretization scheme 

angle. The specific expression is as follows 
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this formula is referred to the standard G-L formula and right shifted G-L formula for 0p  , respectively. 

Wherein the shift parameter p  is a positive integer, =jt j t , 1,2,...j = , while (2.10) provides only 

the first-order accuracy for smooth function ( )f t  if  (0) 0f = . Numerical iteration algorithm based 

on (2.10) in previous works are obtained under the homogeneous initial condition assumption, which 

can not be applied in the situation with arbitrary initial condition. As a comparison, algorithm based on 

the Caputo definition derivative is adaptive for nonhomogeneous initial condition situation[34]. 

Moreover, the R–L derivative coincides with the G–L one for a wide class of  functions in real physical 

and engineering applications, if  suitable smoothness conditions are satisfied. While R-L definition leads 

to initial conditions concerning the limit values of  fractional derivatives which have no known certain 

physical meaning, resulting in practical difficulties appearing in engineering application, this awkward 

situation will not occur for Caputo derivative[35]. To obtain the numerical verification of  the collective 

synchronization behavior, here one simulation based on the Caputo derivative definition is adopted. 

When two types of  fractional Caputo derivatives with q  falling into (0,1)  and (1,2) , the 

discretization method is desired by the L1 and L2 approximation approaches, respectively[36]. 

Specifically, 0=0t  without loss of  generality and definiteness, let 0=0t , =nt n t , then for 0 1q   

1
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where 1 1[( 1) ] [ (2 ) ]q q q
j j j q t− − = + −  −  , 1, 2,j = . 

For 1 2q  , the approximation approach reads 
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with ( ) ( ) ( )
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. 

For 1q = ，Eq. (1.1) is reduced to the ordinary equation and of  course one can employ the fourth-

order Runge-Kutta algorithm[37] to provide an approximation with sufficient precision, otherwise Eq. 

(2.3) can be rewritten in the following way: 

  ( )
2

2

0

1

D

k k

q

k k k j k

j

B

E E B B B B
 



    
=

=

+ + + + = −








  1, 2k = ,    (2.13) 

substituting (2.11) and (2.12) into (2.13) one gets 
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with ( ) ( )k k nB n B t= , ( ) ( )k k nn t = , 1, 2k = , ( ) ( )
n

n t = . 

   

              (a)                        (b)                        (c) 

    

(d)                        (e)                        (f) 

Fig. 1. (Color online) Numerical simulation realization of  kth particle deviation ( )
k

B t  with 

different fractional damping order.  



Considering two states of  the dichotomous noise as 
1

1.2 = , 
2

0.6 =  under correlation time 

0.1
cor
 = ，system parameters are set to 0.8 = , 1 = , 0.5E


= , 0.2E


= , 

2

0
1 = . In Fig. 1 

numerical results of  the convergence of  kth particle ( )
k

B t  under different fractional order q  with 

the initial condition ( )0 1
k

z = . It can be seen that the deviation function ( )
k

B t  always converge 

to 0  under long-term limit situation, that is to say，the movement of  both the two coupled particles 

exhibit uniform behavior and tend to the mean field ( )z t . For the case of  1q  , a comparison of  

Fig 1(a-c) reveals that the speed of  synchronization of  two particles exhibits an evidently increasing 

with the fractional order q  approaching to 1 . While the situation is opposite for the case of  1q  , 

from 1.1q =  to 1.8q = , the synchronization of  the two particles takes more and more time as q  

increases. These two phenomena can be explained as follows: When the fractional damping order q  

approaching to 1, the memory effect of  the system exhibit more and more inconspicuous[32]. At this 

time, the damping force represented by the integral of  the memory kernel function tends to be smaller, 

leading to a faster synchronization speed of  particles on the two DOF. On the contrary, when the 

damping order is too small or too large, memory effect is prominent so that the damping force is 

obvious, so the two particles need longer time to accomplish synchronization. Fig. 2 shows the 

influence of  parameters E


 and D  on the synchronization velocity of  two particles, it is 

determined that neither noise parameters nor noise intensity can exert influence on synchronous speed. 

      

(a)                                    (b) 

Fig. 2. (a) Effect of  coefficient E


the particle deviation ( )
k

B t  with 1.5q = ; (b) Effect of  noise 

intensity D  on particle deviation ( )
k

B t  with 1.8q = . 

3. Analysis of  steady-state response 

 To investigate the potential resonant behavior hidden within the system described by Eq. (1.1), it 

is necessary to estimate the spectral amplification (SPA) of  the oscillator, despite that there are several 

other alternative assessment indexes to quantify the SR phenomenon[38]. To this end, the mean value 

of  the displacement of  the oscillator should be obtained analytically before discussing the SR behavior 

in the system. In this section the steady-state response will be discussed in detail, after that the analytical 

results of  SPA will be gotten by utilizing the stochastic averaging method, typical and extended 

fractional Shipiro-Loginov formulas. 

 Due to the perfectly identify movement pattern between ( )
1

z t  and ( )
2

z t  which has been 



confirmed in Section II, one just need to calculate the first-order moment of  the mean field ( )z t  

to indicate the average of  each particle ( )kz t . Indeed, in section II the synchronization manner 

between 
1

z  and 
2

z  has given the assertion that the deviations of  the mean field of  the two particles 

will tend to 0  in long-time limit, i.e., ( ) ( )
1,2

0
t

z t z t
→

− ⎯⎯→ . The calculation of  the exact solution 

of  the first-order moment is feasible since the displacement process ( )kz t  could be always 

stationary[39]. In fact, the fractional particle in Eq. (1.1) will always be dragged back to the origin sooner 

or later thanks to the harmonic potential ( )
2

2

0
2

k
V t z= . 

 To obtain the analytical solution of  ( )z t  we first take average of Eq. (2.2) and use the 

fractional Shapiro-Loginov formula (2.7), to gain 
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,     (3.1) 

another equation is required to give rise to the solution of  the new emerged term z . For this 

purpose, multiplying Eq. (2.2) by  , averaging all the terms on both sides of  the gained equation, one 

gets 

( ) 2 2
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considering the relevant properties 
2

  = +   and inserting the Shapiro-Loginov formulars given 

by (2.6), (2.7) into Eq. (3.2), the equation can be rewritten as  
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 The collection of  Eqs. (3.1), (3.3) truly constitute one close linear system of  second-order 

differential equations in regard to variables 
1

x z=  and 
2

x z=  
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.    (3.4) 

 By virtue of  the Laplace transform technique [40], the Laplace transformation of  q -order 

fractional derivative of  a function ( )f t  with proper smoothness can be given by 
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Wherein ( )f s  is the Laplace transform of  ( )f t : ( ) ( )  ( )
0

, d
st

f s f t s e f t t
 −= = L , 

( ) ( )0
k

f  

denotes the initial values “  q ” denotes the fractional value q  rounded up to the nearest integer, e.g. 

  1q =  and   2q =  for 0 1q   and 1 2q  , respectively. When put in mind of  the 

translation theorem, one can further get 
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In (3.6)   is the Dirichlet function with 
1

2n =  and  2
n q= , the last term vanishes and it exist 

for the fractional order of  the damping greater than 1 . The usage of  formulars (3.5) and (3.6) makes 

it doable that (3.4) can further be equivalently changed to a corresponding linear algebraic equation set 

( )2 2
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with the coefficients in (3.7) given as follows 
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 ( ) ( ),
k k

X s x t s= L , 1, 2k = , ( )
k

x t  and ( )
k

x t  represent the initial conditions. In order to get the 

analytical results of  the first-order moment, one should firstly calculate the solution of  
1
( )X s  by 

solving (3.7)  
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where the transformed functions in Eq. (3.8) are completely determined by 
kl

a , 
kl

c  and 
kl

d , 

 , 1, 2k l  , which are expressed as follows: 
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−
. 

 It should be noted that 
2
( )X s  can also be solved and be expressed in an analogous way to that 

of  (3.8), while it is not necessary to discuss here when the mean value z  is the only point of  interest. 

Now using the inverse Laplace transform method on the expression (3.8) and considering the relevant 

unicity theorem[41], one can get the solution of  the first-order moment value of  the mean field z , 

represented in the following form: 

 
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= L , in (3.9) the asterisk denotes 



the convolution operator. 

 According to the theory of  the stability condition[42] the stability of  the solution (3.9) could be 

guaranteed under the circumstances that all the possible solutions of  the equation 
11 22 12 21

0a a a a− =  

have roots with a negative or zero real part. 
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0
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q
v E E v

 
 + + + +  .                        (3.10) 

Meanwhile, considering the asymptotic behavior of  ( )z t  given in the expression (3.9), again, 

applying the Tauberian theorem[43] in the functions on the right side of  Eq. (3.9) gives the 

approximation for t → : 
10
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−

→  and 
1
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1
( ) ( )

q
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− −
→ , thus the memorizing 

effect of  the initial conditions (0)
k

x , (0)
k

x , 1, 2k = , should be ignored. Accordingly, the averaging 

value of  the mean field displacement in the long-time limit regime can be given by 

0 10
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( ) ( ) cos( ) d
t
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z t F G t t t t  = −  .                   (3.11) 

 Making use of  the linear response result based on the theory of  signal and system[44], when a 

linear system is inputted by a periodic signal cos( )F t , the output signals of  this system will still keep 

as a harmonic signal, with a same period and a phase skewing 

( ) cos( )
as

z t S t =  + .                         (3.12) 

 Due to the form of  the expression of  ( )z t  given in (3.11), one can obtain similar results of  

the amplitude and the phase skewing of  the stationary output signals 

( )
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ˆS F G i=  , ( )( )
10

ˆarg G i =  ,                   (3.13) 

through calculation the steady-state output amplitude can be expressed as follows 
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G  represents the output amplitude gain (OAG) of  the response, 
2

S  is sometimes called the spectral 

amplification[45]. coefficients 
k

g , 1, , 4k =  are expressed by 
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4. Diverse stochastic resonances 

    There are many indicators to measure the degree of  stochastic resonance, e.g., as the earliest 

measure, signal-to-noise ratio (SNR) is defined as the ratio of  the power spectrum at the corresponding 

signal frequency to the average power spectrum of  background noise. Another method is residence 

time characterization method[46], which measures SR in a symmetric bistable system by calculating the 

average residence time of  particles in a potential well of  the system. In this paper measurement method 

proposed by Gitterman is adopted[45], say, steady-state output amplitude S  (or SPA 
2

S ), to measure 

the SR effect degree. 

4.1. SR induced by   

When considering the effect of  dichotomous noise on SR of  system (1.11), the critical result of  

analytical expression (3.14) obtained in Section 3 can be utilized to give the theoretical analysis of  SR. 

S  depends entirely on the inherent frequency 
2

0
 , excitation frequency  , damping strength  , 

damping order q  of  the system, as well as the switching rate v  of  asymmetric double-valued color 

noise and related index coefficients  , E


 and E


. For the convenience of  calculation, the 

amplitude of  the external excitation is assumed as 1F = , then S G=  in the following analysis.  

Fig. 3 shows the variation of  S  as a function of  noise intensity under different damping orders. 

According to Sec. 2, when the transition rate per unit of  time from 
1  to 

2− (and the opposite 

direction) are fixed, it can thus be seen from D v=  that the noise intensity depends entirely on  . 

In Fig. 3 the spectral amplification of  the system exhibit nonlinearity with respect to   for both the 

case of  1.4q =  and 1.8q = , thus the collective SR gets confirmation in the coupled oscillator. 

Different fractional damping orders have a significant effect on the critical noise intensity 

corresponding to the optimal point of  SR. That is, when other parameters fixed and the damping order 

varies, a larger value of  damping order will promote the occurrence of  collective SR induced by noise 

intensity. In addition, no SR phenomenon occurs for 0 1q  , but occurs for 1 2q  . which also 

confirms that important novel dynamics phenomenon may be missed if  only discuss the damping order 

below 1 [47]. In order to explained this from a more intuitive point of  view, the dependency graph of  

system SPA on joint parameters ( ),q   is plotted in Fig. 3(b). The SR phenomenon only appears 

when the noise intensity is small and the damping order q  near 2 . On the one hand, it shows that 

appropriate noise intensity can enhance the synergistic effect of  periodic signal and random factor. On 

the other hand, the damping force of  the system increases with the damping order increases from 1  

to 2 , the energy required to drive the particle to cross the potential barrier is larger than that for 1q  . 

Indeed, using the analytical formula (3.14), one can obtain the critical value 
SR

  which corresponds to 

the optimal SPA peak of  SR, by solving the equation ( )d 0S   = . The equivalent equation is 

3 3 4 4
0g g g g   +   = , then the extreme noise intensity 

SR
  is given by 



( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )  ( )( )
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 
   

   

= −  + +  +


+ − + − + − +  +

+  + − +  + +  +

  
    

   
     

, (4.1) 

if  substituting the critical noise intensity 
SR

  into Equation (3.14), one can obtain the optimal 

maximum of  SPA when SR occurs.  

    
                     (a)                                  (b) 

Fig. 3. (Color online) (a) Output amplitude S  versus noise intensity under different values of  

fractional order q . (b) Dependence of  output amplitude on joint parameters ( ),q  . Other 

parameters are 0.8 = , 0.5 = , 1.9E

= , 0.3E


= , 

2

0
1 = , 1.5 = , 0.01v = , 

1 2
2 =  . 

 As the inherent frequency 
2

0
  is included in the analytical result (3.14), it is necessary to examine 

its influence on collective traditional SR induced by  . In addition, according to the stability condition 

(3.10), 
2

0
  will also affect the stability of  steady-state output amplitude results, one can obtain the 

stability condition with respect to 
2

0
  as 

( )2 2 2

0 0

q

cr
v E E v

 
   = − − +  + ,                    (4.2) 

wherein 
2

0cr
  is refer as critical intrinsic frequency. Consider the system parameters 0.8 = , 0.5 = , 

1.9E

= , 0.3E


= , 

2

0
1 = , 1.5 = , 0.01v = , 

1 2
2 =  , Fig. 4 shows the influence of  different 

2

0
  values on collective SR under different damping orders ( 0.5, 1, 1.5q = ). It can be seen that the 

steady-state output amplitude increases with the increase of  
2

0
  under each case, while it only peaks 

for 1.5q = . Moreover, a comparation of  the three curves in Fig. 4(c) shows that the resonance peak 

value ( )
max SR

S   increases with the increase of  the inherent frequency. In fact, for the system without 

noise disturbance corresponding to system (1.11), the mean field of  the deterministic system has a 

potential function of  harmonic form ( ) 2

0
2U z z= , wherein the parameter 

2

0
  denotes potential 

intensity. The potential function becomes narrower when 
2

0
  increases, so the oscillator has to reach 

a higher oscillation range under the same amplitude condition, results in a larger steady-state amplitude. 

Under the synergy of  dichotomous colored noise, coupled system and periodic excitation, a narrower 

potential does not require a larger noise intensity to drive the oscillator approaching the optimal 

oscillation amplitude point. This reveals the mechanical mechanism why the critical noise intensity 
SR

  

decreases with the increase of  
2

0
 .   



 

             (a)                        (b)                        (c) 

Fig. 4. (Color online) Effect of  the intrinsic frequency on SR induced by  . (a) 0.5q = ; (b) 1q =  

(b) 1.5q = . 

4.2. Bona Fide SR 

The Bona fide SR indicates the peak phenomenon of  output signal amplitude induced by the 

fluctuation of  signal frequency[48]. Before a detail discussion of  the possible existence of  Bona fide 

SR phenomena in the system (1.11) that may be induced by external excitation frequency, we first 

consider the corresponding deterministic version (i.e.， 0E E
 
= = ) 

2

1 1 0 1 2 1

2

2 2 0 2 1 2

( ) D ( ) ( ) ( ) cos( )

( ) D ( ) ( ) ( ) cos( )

q

q

z t z t z t z z F t

z t z t z t z z F t

  

  

+ + = − + 

+ + = − + 





 .             (4.3) 

Further simplification leads to an equation for the mean field 

2

0
( ) D ( ) ( ) cos( )

q
z t z t z t F t + + =  , 

the solution ( )*
( ) cosz t A t =  +  of  the equation can be obtained by using the method of  

undetermined coefficients, with the amplitude given by 

( )( ) ( )( )

*

2 2
2 2

0
cos 2 sin 2

q q

F
A

q q    

=

 − −  + 

,          (4.4) 

phase angle is ( ) ( )( )1 2 2

0
tan sin 2 cos 2

q q
q q     

−
=   − −    . In addition, the same results 

can be obtained when inserting 0E E
 
= =  into (3.14)，which indicates that system (4.3) is actually 

a special case of  system (1.11).  

   

                       (a)                                   (b) 

Fig. 5. (Color online) (a) Output amplitude of  system (4.3) versus excitation frequency   under 

different fractional order. (b) Analytical result of  A
  versus   and q  according to Eq. (4.4)  

Consider the system parameters 1F = , 1 = , 
0

1 = , the influence of  external excitation 



frequency on output amplitude 
*

A  under different damping orders has been plotted in Fig. 5(a). It 

can be seen that as a function of   , 
*

A  exhibits SR-like non-monotonicity in all three cases. It is 

noteworthy that the resonance degree of  fractional cases 0.05q =  and 1.95q =  are more striking 

than that of  integer order. The introduction of  fractional damping order brings about new resonance 

behavior, and under same parametric condition, Bona fide SR is more likely to occur in the fractional 

case. It is observed that the optimal peak point occurs at 1.95q = , once again proving the necessity of  

considering the damping order 1 2q  . Fig. 5(b) shows the combined effect of    and damping 

order on output amplitude 
*

A . The Single-resonance point 
R

  always exists and gradually increases 

with the increase of  q , while the peak firstly decreases and then increases, and gets unobtrusive when 

q  approaches the integer-case. Indeed， the critical frequency corresponds to the peak satisfies 

( )*
d d 0A   = . For 0q→ , it can be obtained from the (4.4) that 

* 2 2

0
A F  →  − − , the 

corresponding frequency is given by 
2

0R
  = + . The single-peak SR will certainly emerge and 

*

max
A →   when 0q → , which can explain why a saltation within a certain frequency range appears 

in the figure. The system (4.3) would be reduced to the deterministic integer-order version for 1q = , 

and the output amplitude reads ( )
2

* 2 2 2 2

0
A F  =  − +   with the critical frequency calculated 

by 
2 2

0
2

R
  = − . Then the resonance peak point with the optimal value 

( )* 2 2

0
2 4

R
A F   = −  will appear when the parametric condition 

0
2   is met. When 

inserting the limit setting 2q→  into (4.4) one gets ( )* 2 2

0
1A F  → +  −  and 

( )2

0
1

R
  = + , that’s why another saltation appears at frequency 0.7=  in Fig. 5(a). The peak 

values of  the three cases in the figure are consistent with the above analysis results, respectively. 

When considering the presence of  color noise disturbance, the transfer rate v  is sometimes 

called the correlation rate, which reflects the memory effect of  noise. In order to facilitate the analysis, 

the possible SR results under the slow switching ( )0v→  and fast switching ( )v→  patterns of  

asymmetric dichotomous noise will be examined respectively. The switching rate between states 
1

  

and 
2

−  will be extremely slow for a small correlation rate, which leads to an excessive correlation 

time. In fact, a state transition of  the colored noise will be accompanied by a long-time stagnation, the 

damping strength can actually be seen be fixed during this period. Accordingly, in this case random 

damping disturbance coefficient in (1.11) can be divided into two cases in quite long time 

1

2

( ( ), )
E E

t N
E E

 

 


 



+  +
+  =

−  +





.                     (4.5) 

For a long time before the next jump of  noise, (1.11) can be regarded as deterministic system 

whose damping strength is either of  the two in (4.5), so the delta in (4.4) can be replaced. Based on the 

resonance extremum condition ( )*
d d 0A   = , it can be estimated that when 0q→ ,  double-peak 

SR induced by frequency   may appear at critical frequencies  

2

1 0 1SR
E E

 
   + +  + ,   

2

2 0 2SR
E E

 
   + −  + . 

which is indeed consistent with the two peak points 0.4  and 2.44  corresponding to the noise 

intensity 2.2 =  (i.e., 
2

1.1 = ) in Fig. 6(a), so the bimodal Bona Fide SR induced by the external 



excitation frequency is confirmed. The value of  noise state 
2

  is too large for 3 =  and 3.6 = , 

leading to 
2

0 2
0E E

 
 + −  +  , that SR with one peak happens at 

1SR
 . When 1q = ，all possible 

critical resonance frequencies corresponding to SR can also be calculated in an analogical way, given as 

( )
22

1 0 1
2

SR
E E

 
   − +  + ,   ( )

22

2 0 2
2

SR
E E

 
   − −  + . 

When 2q→ , all the two possible resonance positions become 

( )2

1 0 1
1

SR
E E

 
   + +  + ,   ( )2

2 0 2
1

SR
E E

 
   + −  + . 

   

                      (a)                                  (b) 

Fig. 6. (Color online) Dependence of  SPA on noise intensity and parameter under slow-switching 

noise situation. (a) 0.05q = , 
2

1.1,1.5,1.8 = ; (b) 1.95q = . Other system parameters are 0.5 = , 

0.7 = , 0.4E

= , 

2

0
1 = , 1F = , 0.01v =  

1
2 = . 

these analyses match the position 0.41 and 2.32  of  two resonant peaks corresponding to noise 

intensity 1.8E

= , accompanying with the occurrence of  double-peak SR in Fig. 6(b). For larger noise 

coefficients 3E

=  and 5E


= , 

2
1 0E E

 
+ −  +   thus single-resonance occurs at 

1SR
 . A 

remarkable thing is that for 1.95q = , the steady-state output amplitude exhibits a saltation near 

0.4 = , which is analogous to hypersensitivity response[49]. That is, a slight change in frequency will 

result in a dramatic change in steady-state output amplitude within a very small frequency range.  

In the case of  fast switching noise, the steady-state output amplitude can be estimated according 

to (3.14)  

( ) ( ) ( ) ( )
2 2

2 2

0
cos 2 sin 2

q q

F
A

E q E q
 

    

=

− + + +  +      

,      (4.6) 

combining with (4.6) and (4.4), the result of  (4.6) just corresponds to the steady-state solution amplitude 

of  the following deterministic system   

* 2

0
( ) D ( ) ( ) cos( )

q
z t z t z t F t + + =  ,                  (4.7) 

with the equivalent damping strength 
*

E


 = + . For 0q→ , from (4.6) one gets

2

0SR
E


  = + + , thus Bona Fide SR always exist within the range of  parameters considered, which 

is consistent with the critical frequency values at the peak point 1.41  as shown in Fig. 7. For the 

integer-order damping case 1q = , ( )
22

0
2

SR
E


  = − +  holds under the condition 

( )
22

0
2 0E


 − +  . The critical frequency corresponding to single-peak SR can also be estimated 



as ( )2

0
1

SR
E


   + +  when q  approaching to 2 . Accordingly, compared with the integer 

order case, the conditions for the occurrence of  SR in the other two cases of  fractional order damping 

are much looser. In other words, the phenomena of  Bona fide SR are more likely to occur in the 

fractional case. Fixing system parameters at 0.5 = , 0.7 = , 1.8E

= , 0.4E


= , 

2

0
1 = , 1F = , 

1
2 = , 

2
1.1 = , Fig. 7 shows the single-peak Bona fide SR under the fast-switching noise situation 

( 8v = ), wherein the peaks are consistent with the above analysis. 

 

Fig. 7. (Color online) Dependence of  output steady-state amplitude on excitation frequency under 

0.05q = , 1q =  and 1.95q =  with fast-switching noise. 

Fig. 8 shows the single- and double-peak Bona Fide SR with different noise switching rates. For a 

slow switching rate, the system will be equivalent to the case of  two deterministic systems with damping 

strength of  
1

E E
 

 +  +  or 
2

E E
 

 −  +  in A long correlation time, so that the double-peak SR 

phenomenon will happen. As v  increases, jumps of  the noise between two states become more and 

more frequently, two resonant peaks gradually converge and eventually merged into the only one. In 

order to explain this phenomenon intuitively, the phase diagram of  Bona Fide SR depending on joint 

parameters ( ),q v  is given in Fig. 8(c), it is found that bimodal SR only occurs when the damping 

order is close to 0  or 2 . Moreover, for cases of  0.74v   with small q  or 0.93v   with large 

q , the variation of    can only induce at most one peak of  the steady-state output amplitude. 

 

              (a)                       (b)                       (c) 

Fig. 8. (Color online) Effect of  noise switching rate on the output steady-state amplitude. (a) 

0.05q = ; (b) 1.95q = ; (c) Cyan area corresponds to single-peak SR and rosy red area corresponds to 

double-peak SR. Other parameters are 0.5 = , 0.7 = , 1.8E

= , 0.4E


= , 

2

0
1 = , 1F = , 

1
2 = , 

2
1.1 = . 

4.3. SR in broad sense 

SR in broad sense[50] proposed by Gitterman refers to the non-monotonic dependence of  some 

functions of  the output signal (such as SNR, autocorrelation function, amplitude gain, etc.) on noise or 



system parameters, showing that traditional SR is actually included in the concept of  generalized 

stochastic resonance (GSR). 

When other parameters in the system are fixed while the damping strength varying, the steady-

state output amplitude of  the output signal is regarded as a function of   ,  here we examine whether 

the variation of    will bring about the nonlinear peak phenomenon, i.e., whether GSR exists. Firstly, 

consider the slow-switching noise（ 0v → ）, In the process of  each state switch of  noise, the damping 

strength of  the system can be approximately regarded as deterministic, given in (4.5). Substitute the two 

cases in (4.5) into (4.4) and solve the equation of  resonance extremum condition ( )*
d d 0A   = ,  

one gets all the possible analytical results of  critical damping strength when resonance occurs  

( ) ( )

( ) ( )

2 2

1 0 1

2 2

2 0 2

cos 2

cos 2

q q

SR

q q

SR

q E E

q E E

 

 

  

  

− −

− −

=  −  −  −

=  −   −




+
,              (4.8) 

Fig. 9 presents some theoretical curves of  GSR induced by variation of  damping strength under 

different damping order (Fig. 9(a)) and different natural frequency (Fig. 9(b)). Double-peak pattern of  

GSR is confirmed in left diagram for 0.1q = . Steady-state output amplitude function peaks at 0.6  

and 2.27  with the increase of   , while only peak once at 1.25  when damping order equals 0.3 , 

this is because 
1

0
SR

   for 0.3q =  and only 
2SR

  exists. Both the values of  
1SR

  and that of  
2SR

  

are negative for 1q =  and 1.5q = , wherein the damping strength cannot induce any kind of  GSR. 

Something similar happens when consider the effect of  different inherent frequency, as shown in Fig 

9(b). 
1

0
SR

   for 
2

0
2 =  and the only single-peak point appears at the second predicted value 

2
0.56

SR
 = . According to the above analysis, one can make further predictions that no SR will cease 

to exist when the inherent frequency is too large.  

  

                   (a)                                     (b) 

Fig. 9. (Color online) Damping strength inducing GSR with slow-switching noise. (a) 
2

0
1.45 = ; (b) 

0.1q = . Other parameters are 0.5 = , 0.5E

= , 2E


= , 2.5 = , 

1
2 = , 

2
1 = , 0.01v = . 

    When the dichotomous noise is in fast-switching mode, Fig. 10(a) shows the dependence of  

steady-state output amplitude on damping strength under different damping orders. GSR only occurs 

at 1.74
SR

 =  for 0.1q = , while decreases gradually with the increase of    in the other two cases. 

Indeed, a theoretical analytical estimate can still be conducted by virtue of  formula (4.6) and the 

extremal condition equation ( )*
d d 0A   = , the only possible critical damping strength expression 



when resonance occurs can be expressed as   

( ) ( )2 2

0
cos 2

q q

SR
q E


  

− −
=  −  − ,                   (4.9) 

(4.9) is very similar to (4.8) in form, which corresponds to the peak point of  the solid blue curve in 

Fig.10 (a), and negative results will be obtained either 0.5q =  or 1.5q =  is inserted into (4.9), so the 

optimal value does not exist. In addition, GSR induced by   under different noise parameters E


 

has been examined in FIG. 10(b). It is not difficult to find that variation of  E


 can only change the 

SR location, but not make any influence on the peak value of  optimal output amplitude. 

    
                    (a)                                     (b) 

Fig. 10. (Color online) Damping strength inducing GSR with fast-switching noise. (a) 2E

= ; (b) 

0.1q = . Other parameters are 0.5 = , 0.5E

= , 2.5 = , 

1
2 = , 

2
1 = , 

2

0
1.5 = , 8v = . 

By substituting (4.9) into (4.6), one can estimate the analytical prediction expression of  the peak 

value of  output amplitude of  the system as   

( ) ( )2 2

0
sin 2

F
A

q 


 −
,                      (4.10) 

this prediction result is consistent with the single peak value result 1.587
opt

A =  in FIG. 10(b) 

   At last based on above, it is not difficult to realize that due to the introduction of  fractional damping 

in the coupled system, the fractional damping order have a significant impact on the phenomena of  

GSR induced by system parameters. When it is regarded as the only control variable, the steady-state 

output amplitude S  is a complex function containing q , it is difficult to directly calculate the 

concrete explicit expression of  the critical value of  fractional damping order, say, 
SR

q . Nonetheless, 

one can still provide the dependence relation between the output response of  the system and q  from 

a numerical estimation point of  view. Considering parameters 0.5 = , 1E

= , 1E


= , 2 = , 

2.5 = , 
1

2 = , 
2

1 = , 
2

0
1.5 = , S  versus controlled parameter q  under different degree of  

noise switching rate are shown in Fig. 11(a). It finds that under appropriate parameter conditions, GSR 

phenomenon can indeed be produced by controlling the damping order. According to the trend of  the 

joint dependence of  system response on parameters ( ),q v  in Fig.11 (b), it can be determined that 

smaller damping order and larger noise switching rate are more conducive to the occurrence of  stronger 

SR phenomenon of  the system, this new finding is different from the previous conclusions[51]. 

Comparing to the situation where the colored noise is regarded as the mass disturbance of  the oscillator, 



noises’ switching rate has a more significant effect on the SR behavior of  the system when it is regarded 

as the damping disturbance. 

  

                     (a)                                  (b) 

Fig. 11. (Color online) (a) GSR induced by the order of  fractional damping with different switching 

rate. (b) Dependence of  out steady-state amplitude on damping order and switching rate. 

5. Conclusion 

In this present study, several kinds of  SR phenomena in coupled stochastic fractional oscillator 

systems are studied, which endures external periodic signal and damping disturbance of  asymmetric 

dichotomous noise of  polynomial form. The utilization of  averaging method is developed by employing 

the fractional Shapiro-Loginov formula and fractional Laplace transformation law. Theoretical results 

of  steady-state output amplitude of  the coupled system as well as the first moment of  the system 

response relying on stochastic vibrational Mechanism are obtained. Based on which phenomena of  

traditional SR induced by noise intensity, Bona fide SR induced by external excitation frequency and 

GSR induced by different system parameters are discussed in detail, respectively. Moreover, in order to 

understand the stochastic resonance phenomenon in a more intuitional way, we give the parametric 

phase diagram of  the output amplitude, and explain the mechanism of  different stochastic resonance. 

The analytical results provide a convenient and shortcut approach to reveal the mechanism of  two 

kinds of  stochastic resonance. When examining SR induced by noise intensity, we determine the 

significant effect of  fractional damping order on the system. In the case that the noise states satisfy 

1 2
2 =  , it is found that SR only occurs when the damping order is close to 2 , indicating the 

necessity to consider the damping case 2q   in the fractional order. The explicit analytical expression 

of  the critical dichotomous noise intensity corresponding to the optimal peak point is obtained, and it 

is proved that synergy between periodic signal and random factor in the system can be enhanced by 

appropriate noise intensity. It is found that Bona fide SR is more likely to happen in the fractional order 

case than in the integer-one case, and a stronger degree of  SR usually doesn’t correspond to a larger 

noise intensity. A comparison between the deterministic system and stochastic one releases that the 

addition of  dichotomous noise brings about new resonance behaviors in the system (Fig. 6). In addition, 

In the slow-switching noise case, a newfangled phenomenon of  hypersensitive response excitation 



frequency is discovered, by which a novel fact has been validated and confirmed that the polynomial 

dichotomous noise does induce a new dynamic behavior, which has not been reported in previous work. 

By means of  the phase diagram of  the system depending on damping order and noise switching rate, 

it is found that bimodal SR occurs only in the parameter region with slow switching noise and damping 

order close to 0  or 2  (Fig.8 (c)). The results of  GSR indicate that when damping strength is 

considered as the controlled parameter, multimodal GSR happens only for the colored noise with slow 

switching rate (Fig. 9), which is reported for the first time. Moreover, it is determined that not only the 

parameters of  the colored noise but also the inherent frequency can induce different GSR patterns, as 

shown in Fig. 9(b) and Fig. 10(b). It can be determined that damping order has a significant effect on 

the GSR induced by damping strength. These analyses guarantee that the system response can be 

controlled effectively by selecting appropriate parameters. It is believed that the methods developed and 

the results obtained in this paper，is meaningful in further investigating in coupled stochastic fractional 

systems. Relevant findings and discussions are useful for dealing with some real fractional order issues, 

and shed new light on the studies of  dynamical behavior disturbed by nonlinear color noise. 
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