
Noname manuscript No.
(will be inserted by the editor)

Analysis of Nominal Halo Orbits in the Sun–Earth System
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Abstract In this paper, the effect of radiation pressure force on formation of the nominal halo orbit around the
collinear point L1 is estimated. It is developed in the framework of Sun–Earth system. In the third–order approxima-
tion, using Lindstedt–Poincaré technique, the radiation pressure effect on nominal halo orbits is computed. Further,
we develop the solution into a Fourier series of nominal halo orbit. According to the radiation pressure force, the
analysis can be used to design trajectory for spacecraft traveling in more realistic system.
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1 Introduction

The three–body problem is one of the most dynamical systems which have been repeatedly and deliberated studied in
celestial mechanics. Of specific interest are the infinitesimal body trajectory motion under the gravitational effect of
the other two finite bodies. Recently these systems have been received considerable numerical and analytical analysis
[1–7]. In general the restricted three–body problem has five libration points. Two of them are called triangular points,
L4 and L5, while the other are called collinear points, L1, L2 and L3, which take locations on the joining line between
the primaries [8–13].

The libration points in the Earth–Moon or Sun–Earth systems are equilibrium points in the gravitational field, where
the spacecrafts can preserve stationary without consumption of extra–fuel [14, 15]. The dynamics around libration
points furnishes periodic orbits families. Which are serviceable for placing a spacecraft and has an extraordinary
advantageous for solar observation and astrophysics missions as well as communication links etc. [16]. In fact, these
points have a considerable significance in the Sun–Earth system. In particularly, the point L2, which lies between
the Sun and Earth. Because it has a unrivaled feature in the activity of solar observation due to its unique location.
Therefore, the libration points missions are of exceptional interest in the recent time [16].

A halo orbit is a three dimensional periodic orbit near the libration points L1, L2 and L3, in the restricted three–body
problem [17, 18]. A survey on the used methods, which depend on the Hamiltonian dynamical systems properties
within frame of three or more degrees of freedom, to purpose of spacecrafts missions in the proximity of collinear
libration points have been presented [19]. Also they used a combination between symbolic and numerical methods
to design the nominal orbit. Further, the local investigations of the dynamics around this orbit are performed for
station–keeping and transfer manoeuvres.

Halo orbits will generate as resulting from the mutual interaction among the gravitational pull of two planetary
bodies, the coriolis and centrifugal acceleration on an infinitesimal body or spacecraft. We can find these orbits in any
three–body system, for example [20, 21], but not limited to the Sun–Earth–Orbiting Spacecraft or Satellite systems
or the Earth–Moon–Orbiting Spacecraft or Satellite systems. Although, the families of southern and northern halo
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Departamento de Matemática Aplicada y Estad́ıstica. Universidad Politécnica de Cartagena,
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orbits are existing at each collinear libration points, but these orbits tend to be unstable, so the station–keeping is
desired, to conserve a spacecraft on the orbit [22–24]

In the last decades, there are many works have been addressed to investigate the dynamic of halo orbits around the
collinear libration points. The strategy of transfer from the proximity of the Earth to halo orbits around the equilibrium
collinear point between the Sun and Earth have been studied by [25]. The quasibicircular model of Earth–Moon–
Sun–Spacecraft case is considered, which is more coherent model than the restricted three–body problem (RTBP),
to compute the quasiperiodic translunar Halo orbits. These orbits are determined with using a continuation method
starting at the RTBP halo orbits [26].

Recently, [27] have developed numerical method to analyze the Halo/Lissajous orbits in the proximity of libration
collinear points in the frame work of a full solar system model. They have proposed a full solar system gravitational
model, in the synodic coordinate frame with an explicit investigation for the angular velocity with respect to the
inertial reference frame. Based on a dynamical analysis of the Poincaré surfaces sections, an alternative technique to
find the patch points in the multiple shooting method is addressed. Furthermore, by depending on the new patch
points and sequential quadratic programming. They have developed halo orbits around the libration points L1, L2,
and L3, while Lissajous orbits are developed around L1, L2, points in the Earth–Moon system, with the proposed
full gravitational solar system model to verify the impact of used method.

There are many considerable projects proposed by the major space agencies. Some of these projects are Deep Space
Climate Observatory (DSCOVR), National Aeronautics and Space Administration (NASA), LISA Pathfinder which is
an ESA (European Space Agency) mission and Spektr–RG (Roscosmos/ESA), see for more details [22]. The collinear
libration points of the Sun–Earth system are used in most of these projects. But the same associated points in the
Earth–Moon system have attracted an extra attention, in particularly, after the success of the ARTEMIS missions
to the Earth–Moon collinear equilibrium points [28, 29]. The ARTEMIS mission is performed to study the Earth’s
magnetotail regions. This mission is considered one of the most familiar missions to Earth–Moon collinear libration
points.

There are also some significant applications to collinear points missions including communications, surveillance,
observation, space navigation and human operations etc. But the most of these missions concentrated on impulsive
transfers to libration points. The optimization of a low-thrust transmit from the Earth orbit to the halo orbit
around the libration points between the Earth and Moon has been investigated [30]. They also used Particle Swarm
Optimization (PSO) for pruning the search space of a low-thrust path transmit from the Earth orbit to a libration
point orbit in the Earth-Moon system. In this context, the choice of a nominal space telescope orbit around libration
point within frame of the Sun–Venus system (the point from only the Venus side) is analyzed from the illumination
viewpoint conditions and station–keeping costs [24]. Some more studies for geostationary orbits using hybrid low-
thrust propulsion and solar sail are described [31, 32].

[33] have studied the effect of oblate and prolate of magnetic planet on equatorial and halo orbits. While in this
paper, we examine the effect of radiation pressure force on formulation of halo orbit around collinear point L1 in the
Sun-Earth-infinitesimal mass circular restricted three-body system using the Lindstedt–Poincaré method. Further,
we express the solution as in the form of Fourier series.

This paper is organized as follows. In Section 2, we recall the equations of motion of the circular restricted three-body
problem with radiation pressure force around the libration point L1. In Section 3, we describe the periodic motion
in the proximity of the libration point L1 and using the Lindstedt–Poincaré technique to compute the halo orbit. In
Section 4, we analyze the solution correction in out–of–plane motion. In Section 5, we expand the third order analytical
solution in Fourier series and the coefficients are found by Simpson’s composite method. Finally the conclusions have
been given in Section 6. At the end, we write the Appendix A.

2 Formulation of the model

Equations of motion for an infinitesimal body moving in vicinity of the collinear point L1 in the Sun-Earth circular
restricted three–body system, obtain from the equations of motion of the photogravitational circular restricted three-
body problem [34]. In order to find the halo orbit around L1 point, the origin of the reference system will be shifted
to the location of the collinear point L1 and scaled by ξ = −γ(1− x) + µ− 1, η = −γy and ζ = γz. Hence, the full
three–dimensional equations of motion with radiation pressure force are given as [35]

x′′ − 2y′ − (1 + 2c2)x = Sx,

y′′ + 2x′ + (c2 − 1)y = Sy, (1)

z′′ + c2z = Sz,
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where
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∂
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here Pn(ϕ) is the Legendre polynomial of order n with respect to the variable ϕ, and the constant cn (n = 0, 1, 2, ....)
is given by

cn =
1

γ3L

[

µ+ (−1)n
(1− β)(1− µ)γn+1

(1− γ)n+1

]

.

While a dimensionless quantity β is introduced [36]to specify the effect of radiation pressure and P-R drag. It is
defined as ratio of the radiation pressure force to the solar gravitation force.

With some simple calculations Eq. (1) can be rewritten in following form

x′′ − 2y′ − (1 + 2c2)x =S1,

y′′ + 2x′ + (c2 − 1)y =S2,

z′′ + c2z =S3,

(2)

where

S1 =
∑

n≥2
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,
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and the quantity P̄n(x/ρ) denotes
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=
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(3 + 4k − 2n)Pn−2k−2

(

x

ρ

)

.

Units are defined as sum of the mass of the Sun and Earth is unit, distance between the Sun and Earth is unit and the
unit of time is defined as the time period of the rotating frame. Further, we take µ is the unitless mass of the Earth,
γ is the dimensionless quantity defined as the distance between collinear point L1 to the Earth and ρ2 = x2+y2+z2.

3 Solutions and manifolds

In case of neglecting the second and higher order terms of space variable x, y and z, then the left hand side of Eqs (2)
represent the equations of linearized system. Hence the first two equations are coupled and admit the planar motion
in xy–plane, while the third equation represents the out–of–plane motion in the form of a simple harmonic motion.
Thereby, the characteristic equation of the planar system will yield two real and imaginary roots which are called ±α
and ±iλ.

α =

√

c2 − 2 +
√

9c22 − 8c2
2

,

λ =

√

−c2 − 2−
√

9c22 − 8c2
2

,

and the out-of-plane motion will yield two imaginary roots, say ν = ±i√c2. These roots give nature of the orbits
which are perturbing by the radiation pressure effect.

In the range of approximately β ∈ [0, 0.04], the roots are decreasing and further they increase with exponential rate
as β → 1. In Fig. 1, β has approximately same affect on λ (blue curve) and ν (red curve), whereas on the α (black
curve) has the high rate of influence by the parameter β. Moreover, the sign of these roots are not changed due to
introducing the β, therefore, it does not affect the stability. The libration points are unstable as well. Hence, the
manifolds associated to these points are unstable or have unstable parts, then it needs station-keeping.
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Fig. 1 The effect of β on the eigenvalues α , λ and ν

In this way, the general solutions of the linear system are given by

x = Aue
αt +Ase

−αt −Ax cos(λt+ φ),

y = κ1Aue
αt + κ1Ase

−αt + κAx sin(λt+ φ), (3)

z = Az sin(νt+ ψ),

for a certain epoch t, we compute position and velocity of the infinitesimal body in terms of the amplitudes and phases.
But the Eqs. (3) represent a solution of quasi–periodic motion for the linearized system. Thereby the improper choice
of the initial conditions will yield unbounded motion with growing time. For bounded and periodic motion, the choice
of the arbitrary conditions will be restricted to set Au = As = 0. In this case we will obtain the Lissajous orbits
where Ax and Az are amplitude of motions, while φ and ψ are different phases in–plane and out–plane respectively.
Furthermore, for stable (unstable) manifold, we set Au = 0 and As 6= 0 (As = 0, Au 6= 0) and for square Lissajous
orbit around L1 point, we characterized Ax = Az. Moreover, the solution of linearized equations of above system is
unbounded. However, if the initial conditions are restricted and only the non–divergent mode is allowed, then solution
can be expressed in the following form

x = −Ax cos(λt+ φ),

y = kAx sin(λt+ φ), (4)

z = Az sin(νt+ ψ),

here λ and ν are in–plane and out–of–plane motions frequencies.

In general, the in–plane and out–of–plane frequencies λ and ν are unequal. So that the three dimensional linearized
motion will be quasi–periodic. The projections of the motion on the different plane produce the Lissajous–type
trajectories.

The linearized equations as an intermediate Lissajous orbit, on which to build higher–order successive approxima-
tions corrections would be unacceptable [37]. If the amplitude of in–plane and out-of-plane motions are of sufficient
magnitude and so the non–linear contribution to the system produce equal eigenfrequencies and replacing ν by λ.
Hence Eqs. (4)will be rewritten in the below form

x = −Ax cos(λt+ φ),

y = κAx sin(λt+ φ), (5)

z = Az sin(λt+ φ).

By aforementioned condition, the periodic solutions are called halo orbit solutions. Hence the above solutions (5)
represent periodic orbits, which are called the halo–type solutions.

4 Solution Correction in out–of– plane motion

The used approximations to find the halo–type solutions are not concern to the linearized system only, but also
these approximations include that the frequencies of the in–plane and out–of plane are equal. Therefore, it becomes
mandatary to insert a correction term ∆, where ∆ = λ2−c2. The quantity∆ is a significant constraints for frequency
correction and also affected by the parameter of radiation pressure β. This influence is shown in Fig. 2. It decreases
in [0, 0.03] and further increases exponentially.

Nature of the parameter c2, α, λ, ∆, and κ are perturbed because of the radiation pressure. They are decreasing very
fast in the interval β ∈ [0, 0.1], which shown in Table 1 and it increases exponentially as β → 1.
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Fig. 2 The effect of β on ∆.Table 1 Effective change in all parameters with β.

β c2 α λ ∆ κ

0.0 4.06107 2.53266 2.08645 0.292214 3.22927
0.1 1.27898 0.83606 1.19165 0.141042 2.08870
0.2 1.62298 1.20365 1.35122 0.202809 2.24677
0.3 2.13103 1.58303 1.54108 0.243914 2.47780
0.4 2.92161 2.02886 1.78736 0.273039 2.80802
0.5 4.25019 2.60665 2.13177 0.294272 3.29417
0.6 6.74367 3.43469 2.65583 0.309786 4.05537
0.7 12.3017 4.78793 3.55282 0.320835 5.37966
0.8 29.1626 7.52684 5.43054 0.328174 8.17745
0.9 137.211 16.5153 11.7279 0.332250 17.6062
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Fig. 3 The effect of the β on the frequency ω2

Using the correction term ∆, we rewrite the third equation of Eq. (2) as

z′′ + λ2z =
∑

n≥3

cnzρ
n−2P̄n

(

x

ρ

)

+∆z.

Using the Lindstedt–Poincaré technique we introduce an independent variable τ = ωt to remove the secular terms.
Therefore, the frequency correction ω is defined as

ω = 1 +
∑

n≥1

ωn, (6)

where ωn < 1.

Accordingly to develop the third–order periodic solution and remove the secular terms as [18, 38], it is found that
ω1 = 0, and ω2 = s1A

2
x + s2A

2
z,

were s1 and s2 are described in Appendix A. When the radiation pressure force increases, the quantity ω2 changes
its nature as shown in Fig. 3. While the time-period of the nominal halo orbit fluctuates with increasing the value of
the β, shown in Fig. 4.

The amplitude relation is obtained using the expression ω2 and the constraints which obtain after removing the
secular terms. It is written as

l1A
2
x + l2A

2
z +∆ = 0 (7)

where the coefficients l1 and l2 are defined in the Appendix A. Further, values of the parameters on the different
value of β are described in Table 2.
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Fig. 4 The effect of β on the time–period T

Table 2 β on Ax, ω2 and Time-period T

β Ax ω2 T

0.0 ± 0.1352880 − 0.01509350 3.05757
0.1 ± 1.9043800 − 0.02386990 5.40163
0.2 ± 1.2774300 − 0.00240244 4.66122
0.3 ± 0.6239050 0.00337724 4.06340
0.4 ± 0.3063230 0.00706592 3.49068
0.5 ± 0.1433380 0.00850835 2.92253
0.6 ± 0.0604325 0.00766398 2.34781
0.7 ± 0.0211072 0.00530589 1.75917
0.8 ± 0.0050856 0.00259265 1.15402
0.9 ± 0.0004546 0.00061298 0.53542
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0.0

0.5
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2.0
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A
x

Fig. 5 The effect of β on the amplitude Ax.

However, all the secular terms can not be removed. Additionally, it becomes necessary to specify a phase angle
constraint relationships ψ = φ +mπ/2 where (m = 1, 3). The coefficient l1 is always negative whereas l2 is always
positive at any value of the β in [0, 1). Further, we compute nominal halo orbit, in view of ISEE–3 mission for
which the out–of–plane amplitude Az = 110, 000 km and the X–axis amplitude Ax can be found by Eq. 7. Moreover,
at different values of β, the amplitude Ax, frequency ω2 and period T are shown in Table 2. In this context, we
investigate graphically, the effect of radiation pressure on the amplitude of in–plane motion in Fig. 5. It is observed
that the in–plane amplitude increases in approximately β ∈ [0, 0.11], whereas, it decreases when β > 0.11 and tends
toward 1.

Now, we use a set of algebraic manipulation subroutines developed by [38, 39] to find the third–order periodic solutions
under the effect of radiation pressure in the following form

x =a21A
2
x + a22A

2
z −Ax cos τ1

+ (a23A
2
x − a24A

2
z) cos 2τ1

+ (a31A
3
x − a32AxA

2
z) cos 3τ1

y =κAx sin τ1 + (b21A
2
x − b22A

2
z) sin 2τ1

+ (b31A
3
x − b32AxA

2
z) sin 3τ1

z =Az cos τ1 + d21AxAz(cos 2τ1 − 3)

+ (d32AzA
2
x − d31A

3
z) cos 3τ1

(8)

where τ1 = λτ+φ, while the constants a2i , (i = 1, 2, 3, 4), a3j , b2j , b3j , djj , (j = 1, 2) and d21 are given in Appendix
A. Orbit corresponding to the solution (8) is named as halo orbit. Projections of the orbit under the effect of radiation
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Fig. 6 Halo orbit projections on different plane under the effect of radiation pressure

pressure are shown in Figs. (6) at different values for the parameter β, which represents the perturbation of radiation
pressure.

5 Nominal halo orbit by Fourier series

Once the appropriate periodic solutions (8) around the collinear libration point L1 have been found via Lindstedt–
Poincaré technique, we express the solution in terms of Fourier series to realize the nominal halo orbits. The level
of approximation is estimated by limits on the accuracy of the analytical technique, which is used to generate the
Fourier coefficients. By specifying each of the state variables qi is to be expressible in the form

qi =
a
(i)
0

2
+

∑

n≥1

[

A(i)
n +B(i)

n

]

, (9)

where the terms A
(i)
n and B

(i)
n are defined by

A(i)
n = a(i)n cos

(

2nπ

T
t

)

,

B(i)
n = b(i)n sin

(

2nπ

T
t

)

,

(10)

and a
(i)
n and b

(i)
n are the Fourier coefficients, which can be calculated from the following relations

a(i)n =
2

T

∫ T

0

qi cos

(

2nπ

T
t

)

dt,

b(i)n =
2

T

∫ T

0

qi sin

(

2nπ

T
t

)

dt,

(11)

After utilizing Eqs. (9 , 10 , 11), we accomplish the Fourier series solution.

Integration in these two expressions (11) performed by using Simpson’s composite method [40] with a step size chosen
as for the error in approximately less than 10−10. The Simpson’s composite rule is

∫ b

a

f(x)dx =
h

3
[f(a) + f(b)]

+
2h

3
[S1(x2j) + 2S2(x2j−1)]

− b− a

180
h4f (4)(ø),

(12)
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(a) The halo orbit in 3−dimension
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Fig. 7 Halo orbit in different plane by fourier series.

where

S1(x2j) =

(m/2)−1
∑

j=1

f(x2j),

S2(x2j−1) =

m/2
∑

j=1

f(x2j−1),

(13)

here f ∈ C4[a , b] and xj = a + jh, for each j = 0, 1, 2 . . . , n; there exists ø ∈ [a , b]. For the halo orbit at β = 0,
the time period T = 3.05757. Due to tolerance of error 10−10, we obtained subintervals m = 592 and so the step
size h = 0.00516481. Using this step size and level of tolerance of error, with a help of Eqs. (12 , 13), we found the

Fourier coefficients a
(i)
n and b

(i)
n . Further, the state variables which obtained from the third–order approximation using

Lindstedt–Poincaré technique, we express in the form of Fourier series.

The configuration of nominal halo orbit by Fourier series is investigated in Fig. 7, where the capture in the 3D–plane
is shown in the Fig. 7(a) and the projections of the orbit in different plane are shown in Figs. [7(b) , 7(c) , 7(d)].
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6 Conclusions

In this paper, we have studied the nominal halo orbit in the circular restricted three–body problem within frame of
the Sun–Earth system. In this study, we have considered the effect of radiation pressure force by the Sun. The effect of
radiation pressure force is discussed for the formation of halo orbits. To ascertain the nominal halo orbits, once we have
calculated the appropriate periodic solutions around the collinear libration point L1 by Lindstedt–Poincaré method,
we expressed the solutions as in form of the Fourier series up to n = 15. In this context, the Fourier coefficients are
found by using the Simpson’s composite method. During the formation of the halo orbit using Lindstedt–Poincaré
method, we found that the amplitude and period of the halo orbits are perturbed by the radiation pressure force.

The halo orbit shrinks in its amplitude and tends towards the radiating body Sun as value of the β increases. In
addition, the time period increases as β increases in interval β ∈ [0, 0.05] and then decreased on above values of the
β. These findings extend the nature of changes in both in–plane and out–of–plane amplitudes, however we have fixed
the out–of–plane amplitude at 110, 000km as that of amplitude ISEE-3. The effect of radiation pressure amplifies
the effect of the perturbation on the satellite’s motion. According to the radiation pressure force, the analysis can be
used to design trajectory for spacecraft traveling in more realistic system.

Moreover, by Fourier series expansion, we found the periodic orbit with more analytical expression for the halo orbit.
The stable and unstable manifold of the halo orbits and also trajectory transfer would be the interesting topics of
further research.

Appendix A

s1 =
3c3
2D3

[

2a21(κ
2 − 2)− a23(κ

2 + 2)− 2κb21
]

− 3c4
8D3

(

3κ4 − 8κ2 + 8
)

s2 =
3c3
2D3

[

2a22(κ
2 − 2)− ζa24(κ

2 + 2)
]

+
3c3
2D3

[d21(2− 3ζ)− 2ζκb22]

+
3c4
8D3

[

(8− 4ζ)− κ2(2 + ζ)
]

a21 =
3c3(κ

2 − 2)

4(1 + 2c2)

a22 =
3c3

4(1 + 2c2)

a23 =− 3λc3
4κD1

[3κ3λ− 6κ(κ− λ) + 4]

a24 =− 3λc3
4κD1

(2 + 3λκ)

a31 =− 9λ

D2
a1131 +

9λ2 + 1− c2
2D2

a1231

a32 =− 9λ

4D2
a1132 −

3(9λ2 + 1− c2)

2D2
a1232

where

a1131 =

[

c3(κa23 − b21) + κc4(1 +
1

4
κ2)

]

a1231 =
[

3c3(2a23 − κb21) + c4
(

2 + 3κ2
)]

a1132 = [4c3(κa24 − b22) + κc4]

a1232 = [c3(κb22 + d21 − 2a24)− c4]

b21 =− 3c3λ

2D1
(3λκ− 4)

b22 =
3λc3
D1

b31 =
1

D2
b1131 +

(9λ2 + 1 + 2c2)

8D2
b1231

b32 =
1

D2
b1132 +

(

9λ2 + 1 + 2c2
)

8D2
b1232
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where

b1131 =
[

3λc3(κb21 − 2a23)− c4(2 + 3κ2)
]

b1231 =
[

12c3(κa23 − b21) + 3κc4(4 + κ2)
]

b1132 = [3λc3(κb22 + d21 − 2a24)− 3c4]

b1232 = [12c3(κa24 − b22) + 3c4κ]

d21 = − c3
2λ2

d31 =
3

64λ2
(4c3a24 + c4)

d32 =
3

64λ2

[

4c3(a23 − d21) + c4(4 + κ2)
]

D1 =16λ4 + 4λ2(c2 − 2)− 2c22 + c2 + 1

D2 =81λ4 + 9λ2(c2 − 2)− 2c22 + c2 + 1

D3 =2λ
[

λ
(

1 + κ2
)

− 2κ
]
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