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ABSTRACT
For the entry guidance problem of hypersonic gliding vehicles, an analytical
predictor-corrector guidance method based on feedback control of bank angle is
proposed. First, the relative functions between the velocity, bank angle and range-
to-go are deduced, and then, the analytical relation is introduced into the predictor-
corrector algorithm, which is used to replace the traditional method to predict the
range-to-go via numerical integration. To eliminate the phugoid trajectory oscilla-
tion, a method for adding the aerodynamic load feedback into the control loop of
the bank angle is proposed. According to the quasi-equilibrium gliding condition,
the function of the quasi-equilibrium glide load along with the velocity variation is
derived. For each guidance period, the deviation between the real time load and the
quasi-equilibrium gliding load is revised to obtain a smooth reentry trajectory. The
simulation results indicate that the guidance algorithm can adapt to the mission
requirements of different downranges, and it also has the ability to guide the vehicle
to carry out a large range of lateral maneuvers. The feedback control law of the
bank angle effectively eliminates the phugoid trajectory oscillation and guides the
vehicle to complete a smooth reentry flight. The Monte Carlo test indicated that
the guidance precision and robustness are good.

KEYWORDS
Entry guidance, Analytical predictor corrector, Hypersonic gliding vehicle,
Quasi-equilibrium glide, Feedback control.

1. Introduction

Generally, a hypersonic gliding vehicle (HGV) refers to an aircraft adapted in the near
space for long distance gliding that uses a lift-body configuration and a no-power glid-
ing flight mode, and typically, its flight Mach number is much than 5. Compared with
the traditional ballistic reentry vehicle, an HGV has many advantages, such as a fast
remote arrival, a strong maneuvering capability, a flexible and changeable trajectory,
and a large area coverage [1]. Entry guidance in aerospace engineering refers to the
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onboard process in which the steering commands for an HGV with an aerodynamic
lifting capability are generated, so as to guide the vehicle from its initial condition to
safely and accurately reach the specified final condition [2]. For the reentry process of
these vehicles, the range of altitude and velocity is very large, and strict constraints in
the heating rate, dynamic pressure and load factor, as well as the high sensitivity to
the control variables for the hypersonic reentry trajectory, create challenges. The entry
guidance algorithm mainly includes: reference trajectory entry guidance and predic-
tor corrector entry guidance [3]. Reference trajectory guidance is a method to track
the nominal trajectory of prebinding in the onboard computer by designing a control
algorithm. Reference trajectory guidance has the advantages of limited calculations, a
simple guidance system and minimal requirements for the onboard computer, but the
disadvantage is that the landing accuracy is greatly affected by deviations from the
initial entry states and entry environmental disturbances. Thus, it is difficult to meet
the needs of long-range precision attack [4, 5]. Multiple Model Tracking for HGV with
Aerodynamic Modeling and Analysis have been considered by Li et al[6]

Predictor corrector entry guidance was first proposed by Anderson, Schultz,and Sto-
larik [7], and this algorithm for real-time correction of the guidance command predicts
the landing position. It can significantly reduce the effect of the initial dispersion error
on the guidance performance, and it also is very robust against various entry errors [8].
For the enhanced predictor corrector Mars entry guidance approach with atmospher-
ic uncertainties, one can refer to [9]. Lu proposed predictor corrector entry guidance
based on the Newton-Raphson method for different lift-to-drags (L/D) of hypersonic
vehicles [2]. The longitudinal and lateral motion are separated by a quasi-equilibrium
glide condition (QEGC), and a guidance law was correspondingly designed. The lon-
gitudinal guidance computed the size of bank angle via a numerical integration of the
ballistic equations to predict the range-to-go in combination with an iterative correc-
tion algorithm. In the lateral control is the use of bank angle reversal logic or lateral
reference trajectory tracking for guidance [10, 11]. Based on fuzzy logic, Wang, Zhang,
and Tang [12] considered predictor-corrector guidance for entry vehicle .Brunner com-
pared the performance of a numerical predictor corrector (NPC) skip entry guidance
algorithm with that of the Apollo skip entry guidance. NPC algorithms are highly
adaptive, especially in the face of extreme dispersion and off-nominal situations. The
class of predictor-corrector algorithms has evolved and emerged to have great poten-
tial. One of the keys to predictor-corrector algorithms is how to accurately and rapidly
predict the range-to-go. An NPC predicts the range-to-go of the vehicle via numeri-
cal integration of ballistic equations [13]. The main advantage of an NPC is that it
can address any possible flight conditions and can predict the landing point, load and
heating rate in advance; thus, it has a strong ability to adapt. Due to the requirements
for fast prediction, there are strict requirements for the performance of the on-board
computer. An analytical predictor corrector (APC) finds an approximate analytical
solution from all or part of the trajectory to predict the range-to-go. This method
avoids the numerical integration of ballistic equations, thus significantly reducing the
number of calculations and time required [14]. An APC is suitable for online operation
of the on-board computer due to its simplicity, but a weakness of this algorithm has
been the lack of effective means to enforce inequality trajec-tory constrains such as
those on the heating rate and aerodynamic load. Some researchers have proposed a
method to solve this problem by adding an altitude rate feedback in the closed loop
guidance [2, 13]. To shape the altitude profile for improved trajectory characteristic-
s and enforcement of inequality trajectory constraints, the entry guidance algorithm
design not entirely dependent on the QEGC, and the guidance algorithm must be
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modified to eliminate the phugoid trajectory oscillation.
In this paper, based on the QEGC, a high accuracy analytical solution was obtained

for predicting the range-to-go, and it was introduced into the predictor-corrector al-
gorithm. In fact, the essence of the phugoid trajectory oscillation is that the normal
aerodynamic load can not always follow the quasi-equilibrium glide load, which causes
a periodic variation in the altitude in the longitudinal plane. By analyzing the trajecto-
ry characteristics of an HGV, the quasi-equilibrium glide load was obtained. Then, we
proposed a closed loop guidance algorithm based on the feedback of the aerodynamic
load. In the following content, we will verify that this method is also very effective.

2. Preliminary

2.1. Entry Dynamics

For the high lift-to-drag ratio vehicles with low orbital velocities investigated in this
paper, the Coriolis inertial force and centrifugal inertial force caused by the earths
self rotation are small, compared with the aerodynamic force and gravity. Therefore,
the nonrotating spherical earth assumption is employed in the analytical guidance law
design [19]. The three degree-of-freedom (3DOF) point-mass dynamics of a vehicle
over a non-rotating spherical rotating earth are adopted:

ṙ = v sin γ, (1)

θ̇ =
v cos γ sinψ

r cosφ
, (2)

φ̇ =
v cos γ sinψ

r
, (3)

v̇ = −D − sin γ

r2
, (4)

γ̇ =
1

v

[
L cosσ +

(
v2 − 1

r

)
cos γ

r

]
, (5)

ψ̇ =
1

v

[
L sinσ

cos γ
+
v2

r
cos γ sinψ tanφ

]
, (6)

where r is the radial distance from the earths center to the vehicle normalized by the
equatorial radius of the Earth, R0 = 6378.135m. The longitude and latitude are θ
and φ , respectively. Earths relative velocity v is normalized by vscale =

√
g0R0 with

g0 = 9.81m/s2. The relative flight path angle is γ, and σ is the bank angle. The relative
velocity azimuth angle ψ is measured clockwise in the local horizontal plane from the
north. The differentiation is with respect to the dimensionless time τ = t√

R0
g0

.

Finally, terms L and D represent the nondimensional aerodynamic lift and drag
acceleration in g0, respectively, {

L = Kρv2CL
D = Kρv2CD

where K = R0S
2m , and S is the vehicle reference area. CL(α,M) and CD(α,M) are the

lift and drag coefficients as functions of the angle of attack α and Mach number M .
The vehicle mass m is normalized by the initial mass m0. ρ is the atmospheric density,
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and it is expressed as an exponential model:

ρ = ρ0e
−βR0(r−1)

where ρ0 is the density at sea level and β is a constant.

2.2. Entry Path Constraints

To avoid compromising the structural integrity of the vehicle, the operational bound-
aries must be determined by considering the heating rate, dynamic pressure, and
aerodynamic load. The constraints include the following:

Q = KQ
√
ρv3.15 ≤ Qmax

q = 0.5ρv2R0g0 ≤ qmax

n =
√
L2 +D2 ≤ nmax

where KQ = ks ×
(√
g0R0

)3.15
for the constant ks . The values of Qmax, qmax and

nmax are all specified. All of the preceding three constraints are considered ”hard”
constraints because they should be observed with a reasonably tight tolerance.

The lower operating boundaries for the heating rate, dynamic pressure and aerody-
namic load in the h− v plane are

h > max

{
− 2

β
ln

(
Qmax

kQ
√
ρv3.15

)
,− 1

β
ln

(
2qmax

ρ0v2R0g0

)
,− 1

β
ln

(
nmax

Kρ0v2
√
L2 +D2

)}
.

The variation rule of the maximum atmospheric density ρmax with velocity based on
the h− v plane can be obtained, and then, the change rule for the maximum lift Lmax

with the velocity v can be obtained using the lift formula.
Consider the equilibrium glide condition, which is obtained by setting γ̇ in Eq. (5):

L cosσ −
(

1

r2
− v2

r

)
cos γ

r
= 0. (7)

Set σ = σQEGC , and approximate r ≈ 1 and γ ≈ 0. The result can be called the
QEGC L cosσ+(v2−1) = 0. The QEGC can be used to calculate the maximum bank

angle boundary σQEGC max = arccos 1−v2
Lmax

. For vehicles with medium or higher L
D ,

another possible path constraint isL cosσEQ+ (v2−1) ≤ 0, where σEQ is the specified
bank angle. This constraint can help to reduce the phugoid oscillations in the altitudes
along the entry trajectory, and preserve a sufficient bank angle margin that accounts
for trajectory dispersions. This constraint is a soft constraint, and violation of the
constraint would not pose a safety risk or endanger the mission success. According to
the above treatment, the path constraint change for the bank angle constraint follows

σEQ ≤ σ ≤ σQEGC max. (8)
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2.3. Entry Terminal Constraints

Without loss of generality, an energy-like variable e , will be used as the independent
variable for guidance algorithm development

e =
1

r
− v2

2
(9)

As the typical terminal constraints, the trajectory reaches a position at a specified
distance sf , from the target site at a specified final altitude rf , and velocity vf .
Thus, 

r(τf ) = r∗f ,

v(τf ) = v∗f ,

s(τf ) = s∗f

(10)

where s denotes the great-circle range to the landing site, which is normalized by R0

(hence, s is in radians), and it is a function of the longitude and latitude.

3. Analytical Predictor-Corrector Guidance Algorithm

Similar to the conventional gliding guidance method, the gliding guidance is still divid-
ed into two part: longitudinal guidance and lateral guidance. The difference is that this
paper uses an analytical prediction method for the longitudinal guidance. The lateral
guidance is used to determine the sign of the bank angle to meet the requirements of
the lateral deviation of the terminal.

3.1. Longitudinal guidance law design

The reentry trajectory begins at an altitude where the aerodynamic forces are quite
small. Therefore, open loop guidance is adopted in this section. The constant bank
angle σ0 is selected as the control variable in this stage, and its symbol is

sign(σ0) = −sign(∆ψ). (11)

The current heading offset is defined as ∆ψ = ψ − ψLOS , where ψLOS is the azimuth
angle at the current location along the great circle connecting the current location
and the target location and ψLOS is the current actual azimuth angle. In the process
of flight, the altitude oscillation amplitude usually appears after the first trough. An
altitude rate ḣ, equal to zero for the first time is selected as the hand-off time between
the initial descending segment and the gliding segment.

3.1.1. Equilibrium glide solution

Suppose that the flight path angle is small in the process of gliding [15]; then, according
to Eq.(7), the relationship between the velocity and altitude can be obtained as

v =
1

r

(
CLSρR0 cosσ

2m
+

1

r

)− 1

2

. (12)
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The atmospheric density of the gliding process can also be obtained,

ρ =
2m cos γ

SCLv2R0 cosσ

(
1

r2
− v2

r

)
. (13)

Differentiating by v on both sides of Eq.(13),

dρ

dv
= − 4m cos γ

SCLv3r2R0 cosσ
. (14)

Using the atmospheric density index model from Eqs.(4) and (7), we obtain

dv

dρ
=

D

ρβvR0 sin γ
+

1

ρβvr2R0
. (15)

By contrast Eqs.(14) and (15), the relationship between the flight path angle and the
velocity was obtained using the QEGC,

tan γ = − 1

K∗ cosσ [0.5βr2v2R0 + (1− v2r)−1]
(16)

where K∗ = L
D is the lift-to-drag ratio. Eqs.(13) and (16) form the approximate solu-

tion when the vehicle is gliding, which is the function of the velocity.

 

Figure 1. Curve of the flight path angle as a function of the velocity.

Figure 1 illustrates the flight path angle with the velocity curves at different bank
angles. The flight path angle gradually increased with a decrease in the velocity, and
the greater the bank angle is, the greater the flight path angle. When the bank angle
is less than 60 degrees, the maximum flight path angle is less than 5 degrees, which
indicates that the small angle assumption of flight path angle is accurate.

Both sides of Eq.(7) were divided by the lift-to-drag ratio K∗ , we resulting in

D =
cos γ

K∗ cosσ

(
1

r2
− v2

r

)
. (17)
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We substitute Eq.(17) into Eq.(4); according to the small angle assumption for the
flight path angle, cos γ ≈ 1 and sin γ ≈ 0, we obtain

dv

v2r − 1
=

dτ

r2K∗ cosσ
. (18)

Since to is a small amount in the reentry process, it could be approximated that r ≈ 1.
By setting the initial time τ0 = 0 on both sides of Eq.(18), and integrating, we obtain

ln

∣∣∣∣v(τ)− 1

v(τ) + 1

∣∣∣∣− ln

∣∣∣∣v0 − 1

v0 + 1

∣∣∣∣ =
2τ

K∗ cosσ
. (19)

In general, 0 < v(τ) < 1, we let

λ(τ) =
2τ

K∗ cosσ
+ ln

∣∣∣∣v0 − 1

v0 + 1

∣∣∣∣ , (20)

and by substituting Eq.(20) into Eq.(19), we obtain the velocity expression about time

v(τ) =
1− eλ(τ)

1 + eλ(τ)
. (21)

According to Eqs.(1),(7) and (14), we obtain the altitude expression about velocity

h =
2

β

(
ln

v

v0
+

1

2
ln

1− v2
0

1− v2

)
+ h0 (22)

where h0 is the initial altitude.
The actual range-to-go is defined as a large arc that connects the current position

to the target position, which is calculated as

Stogo = cos−1 [sinφ sinφf + cosφ cosφf cos(θf − θ)] , (23)

where θf and φf are the latitude and longitude at the target position, respectively.
When the offset between the azimuth of this great circle and the azimuth angle ∆ψ is
ignored, the differential equation for predicted the range-to-go sp is [13, 16]

ṡp =
ds

dτ
= −v

r
cos γ. (24)

By contrasting Eqs.(18) and (24), the relationship between velocity and predicted
range-to-go can be obtained after integration. Thus,

sp =
1

2
K∗ cosσ ln

rv2 − 1

rv2
0 − 1

. (25)

Taking CAV-H as an example, the lift-to-drag ratio is K∗, the initial velocity is
v0 = 6500m/s , and the end condition is vf = 2500m/s . Using Eqs.(12) and (16), we
obtain the corresponding equilibrium glide altitude and flight path angle are 58.45km
and −0.0632o, respectively. The equilibrium glide solution is taken as the initial value
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(a) Curve of velocity-altitude.

 

(b) Curve of downrange-altitude.

Figure 2. Comparison between the analytical solution and numerical solution.

of the dynamic equations (1)–(6), and then the dynamic equations are numerically
solved. The comparison between the analytical solution and the numerical solution
is shown in Figure 2. The calculation results show that the downrange deviation is
0.6868% and the altitude deviation is 0.7232%, which indicates that the numerical
solution has sufficient accuracy.

For the purpose of entry guidance, the gliding distance of the terminal should satisfy

sf (σ) = stogo − sp = stogo −
1

2
K∗ cosσ ln

rv2
f − 1

rv2
0 − 1

= 0. (26)

Since the terminal gliding distance is a nonlinear function of the bank angle , we can
use the secant method to ad-just the size of the bank angle,

|σi+1| = |σi| −
|σi| − |σi−1|
sf,i − sf,i−1

sf,i. (27)

For each guidance period, when Eq.(26) is satisfied, the value of the bank angle σbase
is taken as a longitudinal guidance command, and the symbol of the bank angle is
decided by the lateral guidance logic.

3.1.2. Feedback control law design

Without relying on QEGC constraints, the guidance command σbase is unable to guide
the vehicle to complete a smooth reentry flight. By constantly adjusting the bank
angle, the aerodynamic load also changes in the longitu-dinal plane, which is one
of the reasons for the oscillation of the reentry trajectory. One design idea for the
longitudinal guidance includes adding a feedback control in the outer loop of the bank
angle to eliminate the phugoid trajectory oscillation. The calculation formula is

|σcmd| = |σbase − k(nN − nref ), (28)

where nN is the real-time normal aerodynamic load, nref is the reference load, and
k > 0 is the gain. A phugoid trajectory oscillation means that the normal aerodynamic
load cannot always follow the quasi-equilibrium glide load, which causes a periodic
variation in the altitude in the longitudinal plane.

It is known that the dynamic pressure formula is q = 0.5ρv2g0R0, and in differential
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form, we have

dq

dv
=

1

2
g0R0

(
dρ

dv
v2 + ρv

)
. (29)

Substituting Eq.(14) into Eq.(29) and integrating with respect to v, we obtain

q =
mg0 cos γ

CLS cosσ

(
1

r2
− v2

r

)
. (30)

Eq.(30) is substituted into the definition of a normal aerodynamic load, nN = L cosα+
D sinα , to obtain the quasi-equilibrium glide load,

nQEGC =
1 +K∗−2

cosσ

(
1

r2
− v2

r

)
. (31)

The different types of entry vehicles also have different quasi-equilibrium glide loads.
There are three main types of entry vehicles. The first is a capsule crew exploration
vehicle (CEV), and its hypersonic trim L

D ratio is approximately 0.28. The second

vehicle is the X-33, which has a medium hypersonic L
D ratio of approximately 0.9.

The third vehicle model is a generic high performance Common Aero Vehicle, called
a CAV. The CAV has a high maximum L

D ratio of 3.5 at hypersonic speeds [2]. The
quasi-equilibrium glide load required for the CEV is the largest, followed by X-33, and
it is the smallest for the CAV.

 

Figure 3. Curves of load factor versus velocity.

The quasi-equilibrium glide load is a monotonically decreasing function of the ve-
locity (Figure 3). Generally the initial entry state of a hypersonic glide vehicle is not
satisfied by the QEGC, which will cause the normal aerodynamic load to fluctuate
near the quasi-equilibrium load, and this ultimately leads to the creation of a skip
gliding trajectory. In addition, when an HGV performs an entry mission, the bank
angle can be adjusted at any time according to the guidance directive, which is bound
to aggravate the degree of oscillation.

To eliminate the phugoid trajectory oscillation and guide the vehicle to complete
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the smooth reentry flight, let nref = nQEGC ; then, Eq. (38) becomes

|σcmd| = |σbase| − k(nN − nQEGC) (32)

During each guidance period, the deviation between the real-time normal aerodynamic
load and the quasi equilibrium glide load is revised to obtain a smooth reentry tra-
jectory. Typically, the trajectory is pulled up too high after the initial dive and then
continues to oscillate for the rest of the trajectory. Therefore, during the early stage
of reentry, the feedback control law of the bank angle should focus on eliminating
the periodic oscillation, and it should select the larger gain. During the later stage of
reentry, the feedback control law should focus on the correction of the downrange and
select the smaller gain. The gain, k > 0, may be scheduled as a linear function of the
velocity, and a piecewise decreasing function is used to represent the gain coefficient

k =

 k1, v > v1,
k2, v2 < v ≤ v1,
0, v ≤ v2

(33)

where k1 and k2 are set according to the actual reentry initial state and terminal
constraints.

3.1.3. Lateral guidance law design

The lateral motion of an entry vehicle is controlled by the sign of its bank angle, as de-
termined by the entry guidance system [11]. The conventional technique for changing
the bank angle sign is based on prespecified threshold values in the azimuth error of
the vehicle with respect to the target site. A lateral threshold based on the crossrange
and range-to-go is proposed to determine the sign of the bank angle command and
control the terminal heading error [23]. It has been confirmed that this method is more
effective than the azimuth error for lateral guidance, and this paper also adopts this
lateral guidance method.

 

Figure 4. Spherical geometry of the crossrange.

The crossrange at the target site is χ, as shown in Figure 4. The formula for calcu-
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lating the crossrange is

χ = − sin−1 [sin stogo sin(ψ − ψLOS)] , (34)

where the range-to-go stogo and ψLOS are the same as defined in section 3.1. Figure 4
illustrates the spherical triangle by which relationship Eq. (44) is derived. The formula
for calculating the azimuth angle is

ψLOS = −sin−1

(
sin(θf − θ) cosφf

sin stogo

)
. (35)

Define the crossrange reference boundary as

χ = − sin (sin stogo sin(∆ψ)) , (36)

where ∆ref = (∆ψ0−∆ψf )stogo
s + ∆ψf is the reference azimuth angle deviation and

∆ψ0,∆ψf are representa-tive of the initial and terminal azimuth angle deviations,
respectively. and determine the beginning and end of the opening size of the crossrange
boundary, respectively. To realize control of the lateral trajectory, it is necessary to
find a suitable reversal logic for the bank angle. The basic principle of reversal logic
is to design a symmetric reference crossrange boundary with the downrange as the
center. When the vehicle reaches the reference crossrange boundary, the bank angle
sign switched, and the motion of the vehicle is reversed, which ensures that the vehicle
is always in the interior of the reference crossrange boundary.

 

Figure 5. A special case of lateral reversal logic.

This study found that in one case the reversal logic will fail, as shown in Figure
5. Assuming that the crossrange χi during the i-th guidance period is more than
the lateral boundary threshold χi, the sign of the bank angle is reversed; During the
(i + 1)-th guidance period, the crossrange χi+1 is still more than the current lateral
boundary threshold χi+1, and the bank angle will still be reversed according to the
reversal logic. At this time, the reversal logic is wrong, which will cause the vehicle
to glide in a direction away from the lateral boundary. As a result, the lateral error
becomes increasingly, which leads to the failure of the guidance algorithm. To avoid a
guidance logic error, a novel lateral guidance logic is designed, that is,

Sσ(τi) =

 sgn(σ(τi−1), |χi| ≤ |χi|,
sgn(Sσ(τi−1)), |χi| ≥ |χi|&|χi−1| > |χi−1|,
−sgn(Sσ(τi−1), |χi| ≥ |χi|&|χi−1| < |χi−1|.

(37)
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(a) Entry trajectories in the downrange-
altitude space.

 

(b) Entry trajectories in the velocity-altitude
profile.

Figure 6. Trajectory characteristics for the longitudinal plane.

Combined with the magnitude of the bank angle that was determined, the final guid-
ance law for the bank angle is

σcmd = Ssigma|σcmd|. (38)

4. Simulation analysis

The CAV-H vehicle model is used in the numerical computation in this section. Its main
characteristic parameters include a weight m, of approximately 907.2kg and a reference
area of 0.4839m2. The path constraints in the entry gliding include a maximum heating
rate of Qmax = 800kW/m2, a maximum dynamic pressure of qmax = 300kPa and a
maximum load factor of nmax = 5.0g. The following nominal angle of the attack profile
α is used for all cases

α =

{
45deg, ifM ≥ 10,
45− 0.612(M − 10)2deg, if2.5 ≤M ≤ 10.

(39)

where M is the Mach number.

4.1. Typical trajectory simulation

As the first step, we wanted to verify the validity of the analytical predictor-corrector
guidance algorithm and then compare the effects of applying a feedback bank angle
control to the trajectory. In the following simulation, we designed two cases: (1) only
using the analytical predictor-corrector guidance algorithm and (2) applying the an-
alytical predictor-corrector guidance algorithm with the feedback bank angle control
(Eq.(33)).

The initial reentry state of the vehicle was set to an initial altitude of h0 = 100
km, a velocity of v0 = 7500m/s, initial latitude and longitude coordinates of (0◦, 0◦)
, a flight-path angle of γ0 = −0.8◦, an azimuth angle of ψ0 = −22.90◦ . We set the
initial azimuth angle deviation ∆ψ0 = 30◦, and the terminal azimuth angle deviation
∆ψf = 0◦ . Terminal constraints included: a target site of (E65◦, N65◦), a terminal
altitude of 16km, and a terminal velocity of 1600m/s.

Parameter bias and uncertainty are not considered in this simulation. Figure 6(a)
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(a) Curve of time-crossrange.

 

(b) Curve of longitude-latitude.

Figure 7. Trajectory characteristic in lateral plane.

indicates the typical trajectory characteristics for the longitudinal plane. Upon com-
paring the two cases, there were no phugoid trajectory oscillations, and the velocity-
altitude histories are relatively smooth in case 2. Therefore, the feedback control law
based on the aerodynamic load is feasible in this study. Figure 6. (b) shows the trajec-
tories for the velocity-altitude profile. During the reentry process, the trajectory of the
CAV-H is always located inside the reentry corridor, thus satisfying the requirements
of various path constraints. The altitude and velocity of the landing site were 16.18km
and 1644.6m/s respectively, in case 1 and 16.17km and 1622.2m/s, respectively, in
case 2. The simulation results obtained by the two algorithms indicate that the de-
viation in altitude is less than 1.5km, and the velocity deviation is less than 50m/s.
Thus, the analytical predictor-corrector guidance algorithm proposed in this paper has
higher guiding accuracy.

Figure 7 indicates the lateral trajectory characteristics of the gliding reentry, and
the CAV-H performed several lateral maneuvers and finally reached the target accu-
rately. The lateral guidance law always restricts the lateral movement of the CAV-H
to the interior of the lateral corridor. During the process of approaching the target, the
lateral corridor converged as the range-to-go decreased, whereas the lateral guidance
law constantly revised the deviation until there was convergence to the set target.
In case 1, the latitude and longitude of the landing site were (64.94◦, 64.98◦), and in
case 2, they were (64.99◦, 64.99◦). Meanwhile, the downrange deviations for the two
cases were 6.67 km and 1.11 km, respectively. The deviations from the latitude and
longitude calculated by these two algorithms were all less than 0.15◦, and the distance
between the landing site and target site was less than 10 km, which satisfies the guid-
ance precision requirement.

Figure 8 indicates the attitude motion characteristics of the CAV-H. The maneuver
of the CAV-H in the lateral corridor is achieved through the bank angle reversal logic.
As the target was approaching, the lateral corridor gradually converged, and the fre-
quency of the bank angle reversal increases (Figure8.a). The reversal times of the bank
angle are related to ∆ψ0 . The greater ∆ψ0is, the longer it takes the vehicle to arrive
at the lateral boundary, which results in a reduction in the frequency of the bank angle
reversal. However, the vehicle can not modify the crossrange in time when a larger
∆ψ0 is selected. As a result, the actual crossrange and flight time will increase, and
the lateral guidance accuracy will be reduced. Comparing the two cases, the feedback
control law only corrects the amplitude of the bank angle and does not increase the
reversal frequency. Figure 8.(b) shows that the flight path angles |γ| are less than 3
degrees in both cases, thus satisfying the assumption of a small flight path angle. The

13



 

(a) Bank-angle histories of the CAV-H.

 

(b) Flight-path angle histories of the CAV-H.

Figure 8. Attitude motion characteristics of CAV-H.

deduced range-to-go Eq.(26) is suitable for the analytical predictor-corrector guidance
algorithm.

The characteristic curves of all path constraints of the CAV-H during reentry g-
liding are given in Figure 9. In both cases, the heating rate, dynamic pressure and
load factor constraints did not exceed the given maximum limits. Compared with case
1, the curve of the above path constraint in case 2 is smoother, and its oscillation
amplitude is significantly reduced. The effect of heat/pressure protection is improved.

4.2. Entry missions

Next, we tested the performance of the proposed analytical predictor-corrector guid-
ance algorithm. The assumption that the CAV-H follows the orbiter in a regression
orbit with an inclination of 60◦, a regression period of 24 hours and an orbital period
of 4 hours was used. The track of sub-satellite points is shown by the dotted line in
Figure 10. To test the adaptability of the guidance algorithm for different downrange
missions and to steer the vehicle in lateral maneuvers, 6 missions were arranged. They
were divided into three groups. The first group (M1 and M2) is a small crossrange
mission, and the target site is in the orbit plane of the initial reentry moment. The sec-
ond group (M3 and M4) is on right side of the large crossrange mission, i.e., the target
site is on the right side of the orbit plane (observed along the orbit running direction).
The third group (M5 and M6) corresponds to the left side of the large crossrange
mission. In each group, two missions were included, which were large and relatively
small downrange. The initial downrange, crossrange, and terminal constraints for each
mission are shown in Table 1.

Figure 10 illustrates the sub-satellite points formed by the CAV-H after the comple-
tion of all missions. Table 2 lists the terminal conditions that the guidance algorithm
achieved for all missions (t for computing time). The test results indicate that the
landing site for each mission (M1-M6) was not more than 15 km from the given target
site, the velocity error was less than 100m/s, and the altitude error was less than 1
km. The guidance algorithm can adapt to the mission requirements of different longi-
tudinal ranges. To accomplish reentry missions outside the orbit plane, the guidance
algorithm also has the ability to steer the vehicle in lateral maneuvers. According to
the calculation results of the M3-M6 missions, the CAV-H can accurately reach the
target of 1000 km on both sides of the orbit plane, and the deviations in the longi-
tude and latitude were less than 0.15◦. The guidance algorithm could make full use of
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(a) Heating rates histories of the CAV-H.

 

(b) Dynamic pressure histories of the CAV-H.

 

(c) Load factor histories of the CAV-H.

Figure 9. Characteristic curve of path constraint.

CAV-H’s high maneuver ability, significantly increasing its reentry coverage.

 

Figure 10. The track of sub-satellite points.

When the CAV-H was separated from the orbiter, the reentry position was chosen
as the intersection of the equator and the meridian, i.e., the latitude and longitude co-
ordinates were (0◦, 0◦). The initial altitude was 120 km. The magnitude of the velocity
was 7600 m/s and the direction along the tangent of the regression orbit at the reentry
position. Thus, the initial azimuth angle was 30◦. Finally, the initial flight path angle
was set to −0.8◦. The path constraints of all of the missions were the same as those
described in section 4.1. Considering the control capability of the vehicle, the flight
control authority was restricted by a maximum bank angle of 85◦. The maximum bank
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Table 1. Entry mission scenarios.

Missions Downrange[stogo(km)] Crossrange [χ0 (km)] Velocity [vf (m/s)] Altitude [hf (km)]

M1 6523.5 -43.9 2500 16
M2 8989.2 27.9 2300 16
M3 6438.4 -989.2 2500 16
M4 8990.7 -966.5 2300 16
M5 6505.3 -1048.3 2500 16
M6 9012.8 1005.1 2300 16

Table 2. TAEM condition errors and computation times.

Missions ∆hf (m) ∆vf (m/s) ∆sf (km) ∆θf (deg) ∆φf (deg) t/s

M1 163.3 50.20 13.90 0.08 0.08 0.76
M2 180.5 54.6 6.86 0.08 0.01 0.86
M3 120.8 77.73 6.42 0.03 0.05 0.75
M4 109.6 91.09 11.12 0.10 0.02 0.84
M5 163.7 80.18 11.89 0.10 0.03 0.76
M6 100.2 84.81 3.29 0.01 0.00 0.84

angle rate was 40◦/s, and the maximum attack angle rate was 20◦/s.

5. Monte Carlo Simulations

The traditional guidance accuracy assessment method evaluates the dispersion of the
landing site, which requires many flight tests. However, due to the high cost of a flight
test and to the various conditions of test field constraints, the number of flight tests is
extremely limited. Thus, it is difficult to meet the needs of the accuracy assessment.
At present, Monte Carlo simulations are usually used to estimate the guidance accura-
cy. To evaluate the accuracy of the analytical predictor-corrector guidance algorithm
and verify its robustness, 1000 Monte Carlo simulations were conducted for various
disturbances. The entry condition, aerodynamic coefficient, atmospheric density, and
vehicle mass are all dispersed. The dispersion distribution and their 3−σ values for the
Gaussian distribution and the minimum/maximum value for a uniform distribution
are provided in Table 3.

Figure 11 indicates the simulation result and the landing site dispersion statistics
under the condition of a disturbance. The results show that the reentry process does
not deviate from the original glide trajectory and can meet the requirements of the
guidance in the presence of errors and perturbations. Longitudinal guidance results
show that the range for a terminal altitude deviation is 51 m 427 m, and the max-

Table 3. Statistics of dispersions used in the Monte
Carlo simulations.

Parameters Dispersion 3 − σ or min /max

∆ρ/(kg/m3) Uniform ±15%
∆m/kg Uniform ±15%
∆CL Uniform ±15%
∆CD Uniform ±15%

∆h0/km Gaussian ±300m
∆θ0/(◦) Gaussian ±0.15◦

∆φ0/(◦) Gaussian ±0.15◦

∆v0/ms−1 Gaussian ±100m/s
∆Γ/(◦) Gaussian ±0.15◦

∆ψ0/(◦) Gaussian ±0.15◦
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Figure 11. Monte-Carlo simulation results.
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imum deviation in the terminal velocity is 84m/s for the 1000 random interference
trajectories, which meets the requirement of guidance precision (Figure 11.a-b). Un-
der the action of a random disturbance, the velocity-altitude histories are smoother,
and all can satisfy the path constraint. The trajectory of gliding is also relatively sta-
ble, and the feedback law of the bank angle can still remarkably restrain the periodic
oscillation of the trajectory. Lateral guidance results show that all of the trajectory
reversal rules are consistent (Figure 11(c)-(d)). The random perturbation does not
change the lateral reversal rule; it only produces a small change in the reversal time.
Therefore, the lateral guidance law is very robust. The landing sites are concentrated
in the range of 10km from the target site (98.73%), the maximum range deviation
is not more than 15 km (Figure 11.e), and the longitude and latitude deviations are
less than 0.15◦, which meet the accuracy requirements of the guidance to the landing
site. Taking the heating rate as an example, all trajectories satisfy the maximum path
constraint.

6. Conclusions

In this paper, an analytical predictor-corrector guidance method based on the feed-
back control of the bank angle was proposed. This guidance algorithm does not rely
on a pre-designed reference trajectory; it can generate real-time guidance commands
on request to control the vehicle to perform reentry missions. According to different
reentry missions, the guidance algorithm can adjust the bank angle in time to meet the
requirements of different downranges. For the reentry mission in the non-orbit plane,
the guidance algorithm also has the ability to steer the vehicle in lateral maneuvers.
The guidance algorithm can make full use of CAV-H’s high maneuver ability, signifi-
cantly increasing its reentry coverage. The feedback control law of the bank angle that
we proposed can not only effectively eliminate the periodic oscillation of the glide tra-
jectory but also reduce the amplitude of the heating rate, dynamic pressure and load
factor. Therefore, the harsh environmental conditions of the vehicle during the reentry
process are improved. Compared with the traditional numerical predictor-corrector
guidance method, the calculation cost of this method is significantly reduced, and it
exhibits higher guidance accuracy. Monte Carlo simulation results show that the pro-
posed guidance method has good robustness, can adapt to changes in the mission and
environment, and is very flexible and adaptable.
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