
Biological Characteristics Analyzing of Molecular Structures via Topological Index 
Computation  

Wei Gao1*, Juan Luis García Guirao2, Hualong Wu2 
1School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China 

2 Department of Applied Mathematics and Statistics, Technical University of Cartagena, Hospital de Marina 
30203-Cartagena, Spain 

Corresponding author: gaowei@ynnu.edu.cn (W. Gao) 
Abstract: It's revealed from the earlier studies that lots of biological characteristics of compound are closely related to 

the molecular structure of compound. For example, the structure-dependency of total -electron energy  heavily 

depends on the sum of squares of the vertex degrees of the molecular graph. It provided us the trick to analyze the 
biological properties of compounds and materials by means of topological index calculating. In this paper, we study 
the biological characteristics of some important molecular structures from mathematical perspective. First, 
Nordhaus-Gaddum-type inequalities for some distance-based indices are presented; then, the reverse eccentric 
connectivity index of haphthylenic lattice is determined. 
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1. Introduction 

In the past 40 years, a large number of biological experiments found that there is a 

closed connection between biological properties of compound and its molecular 

structure. As an instance, it’s found that the sum of squares of the vertex degrees of the 

molecular graph reflects the structure-dependency of total -electron energy  and 

measures the physical-biological properties of molecular structures (see Gutman et al. 

[1-5], Angelina et al. [6], Jones et al. [7], Peric et al. [8], Morales [9] and Markovic 

[10]).  

In theoretical biology, each vertex expresses an atom and each edge represents a 

chemical bond between two atoms, thus the molecular structure can be modeled as a 

graph G with atom set  (i.e., vertex set) and chemical bound set  (i.e., edge 

set). A topological index defined on the molecular graph is regarded as a real-valued 

function f: G  which maps each molecular structure to a positive real score. There 

are more than one thousand indices introduced in past 40 years, such as Wiener index, PI 
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index, eccentric related index, harmonic index, Zagreb index, and sum connectivity 

index (Several results on these indices can refer to Gao et al. [11-19], and Hosamani [20] 

for more details). The terminologies and notations used but not clearly defined in this 

paper can be found in Bondy and Mutry [21]. 

As the extension of the Wiener index, the modified Wiener index was introduced as 

. 

The hyper-Wiener index and -modified hyper-Wiener index are defined as 

=  

and 

, 

respectively.  

The multiplicative Wiener index is stated as 

. 

Correspondingly, the logarithm of multiplicative Wiener index is expressed as 

. 

The Harary index is denoted as 

, 

The second and third Harary indices are defined as 

,
 

. 

More generally, generalized Harary index is denoted by 

{ , } ( )
( ) ( , )

u v V G
W G d u vl

l
Í

= å

l

( )WW G
2

{ , } ( ) { , } ( )

1 ( ( , ) ( , ))
2 u v V G u v V G

d u v d u v
Í Í

+å å

2

{ , } ( ) { , } ( )

1( ) ( ( , ) ( , ))
2 u v V G u v V G

WW G d u v d u vl l
l

Í Í

= +å å

{ , } ( )

( ) ( , )
u v V G

G d u vp
Í

= Õ

{ , } ( )

( ) ln( 2 ( , ))
u v V G

G d u v
Í

Õ = Õ

{ , } ( )

1( )
( , )u v V G

H G
d u vÍ

= å

1
{ , } ( )

1( )
( , ) 1u v V G

H G
d u vÍ

=
+å

2
{ , } ( )

1( )
( , ) 2u v V G

H G
d u vÍ

=
+å



 

where t is any non-negative real number. The contributions on Wiener related indices 

and Harary related indices can refer to Knor et al. [22], Mujahed and Nagy [23], 

Quadras et al. [24], Ghorbani and Klavzar [25], Sedlar [26], Pattabiraman and Paulraja 

[27], Fazlollahi and Shabani [28], Ilic et al. [29], Heydari [30], Eliasi [31] and Lucic et 

al. [32]. 

For a fixed vertex , the eccentricity  of vertex u is defined as the 

largest distance between u and any other vertex v in G. Ediz [33] introduced a new 

distance-based topological index called reverse eccentric connectivity index which is 

stated as 

, 

where . Nejati and Mehdi [34] obtained the reverse eccentric connectivity 

index of tetragonal carbon nanocones. More results on eccentricity related indices can 

refer to Abraham and Weismann [35], McCrary et al. [36], Farooq et al. [37], Putz et al. 

[38], Berrocal and Mora [39], and Alaeiyan et al. [40]. 

Although there have been great contributions in distance-based and degree-based 

indices of molecular graphs, the studies of special indices for particular molecular 

structures are still largely limited. For this reason, we discuss some distance-based 

indices of commonly used biological structures for biological characteristic measuring.  

We arrange the rest context as follows: Nordhaus-Gaddum-type inequalities for 

several distance-based indices are manifested first; then, the reverse eccentric 

connectivity index of haphthylenic lattice is computed. 
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2. Main Results and Proofs 

The purpose of this section shows the main result of the paper. 

2.1 Nordhaus-Gaddum-type inequalities for bipartite molecular graph 

   The bipartite (molecular) graph G is a graph whose vertex set can be divided into 

two parts X and Y, where each edge  satisfies  and . It implies 

that for each edge in bipartite molecular graph, one end is in X and the other end is in Y. 

For any molecular graph G, the  is defined as follows:  and  if 

and only if . 

Theorem 1. Let  be a bipartite molecular graph with  and . 

Then, we have 

   if , 

   if , 

, 

   if , 

   if , 

, 

, 

.
 

Proof. Set  as the distance between u and v in molecular graph . Clearly,  
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is also a bipartite molecular graph. Next, we only present the proof of  

part for , and other parts can be deduced in the similar way.  

Let ,  and . By the definition of  and bipartite 

structure, we infer 

= , 

= , 

By the definition of , we verify that  and  if  (i.e., 

). Analogously, we yield  and  if  (i.e., 

). It implies that each pair of vertices from different partitions of molecular 

graph G contribution at least  to , and the total contribution of all 

pairs is at least . For , we get , , and thus 

contribution at least  to . Therefore, for , we obtain 

                   .                  

Now, let’s show the sharpness of the bounds presented in Theorem 1 by 

constructing a family of graphs. In fact, all the bounds shown in Theorem 1 are tight for 

this kind of graph, but we only explain  part for . Let  be a 

-regular (the degree of each vertex is ) balanced (it means ) bipartite 

molecular graph of order  and diameter 3. If  and  from the same 

partition, then we derive  and there are  such vertex pairs. If  

and  from the different partitions, then for given x, there are  vertices y satisfy 

 and  vertices  satisfy . Therefore, 
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= . 

On the other hand,  is also a balanced bipartite molecular graph of order 

 and diameter 3, while it is -regular. If  and  from the same partition 

of , then we derive  and there are  such vertex pairs. If  and 

 from the different partitions of , then for given x, there are  vertices y satisfy 

 and  vertices  satisfy . Therefore, 

= . 

Finally, we get  

 

since  in this example. 

Our next result in this subsection is stated as follows. 

Theorem 2. Let G be a uniquely (each of its k-coloring induces the same vertex partition) 

k-colorable graph of order n, and X be a partition which divides the vertex set into k 

parts corresponding to k colors (i.e., , and  for 

 and ). Let  be a graph defined as follows: ; for  

and  with ,  if and only if . Assume that  

where p, q are the nonnegative integers satisfy . Then, we have  
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   if , 

   if , 

, 
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Proof. Let  for . Next, we only present the proof of  

part for , and other parts can be deduced in the similar way.  

If vertices x, y from the same color class of G, then  and . 

Hence, the total contribution of such vertex pairs are at least . If vertices x, y 

from the different color class of G, then the contribution of such vertex pair is at least 

. Therefore, for , we get 

= . 

At last, our result on  with  is followed from the fact that  

.                                                     

 

2.2. The reverse eccentric connectivity index of haphthylenic lattices 

    The naphthylenic net is discussed first in Diudea [41] which contain the sequence: 

. As an example, the structure of  is described 

1
( ) ( ) 4 2(( ) )

2 2 2X

n p p
WW G WW G k q q

+æ ö æ ö æ ö
+ ³ + - +ç ÷ ç ÷ ç ÷

è ø è ø è ø

12 4 2 4( ) ( ) (1 ) ( 1)(( ) )
2 2 22 2X

n p p
WW G WW G k q q

l l l l

l l

+æ ö æ ö æ ö+ +
+ ³ + + - - +ç ÷ ç ÷ ç ÷

è ø è ø è ø
0l >

12 4 2 4( ) ( ) (1 ) ( 1)(( ) )
2 2 22 2X

n p p
WW G WW G k q q

l l l l

l l

+æ ö æ ö æ ö+ +
+ £ + + - - +ç ÷ ç ÷ ç ÷

è ø è ø è ø
0l <

( ) ( ) ( )1( )2 2 2( ) ( ) 2
n p pk q q

XG Gp p
++ - +

+ ³

( ) ( ) ( )1( ) 12 2 2( ) ( ) ln( 2 )
n p pk q q

XG G
++ - + +

Õ +Õ ³

11 1 1 1( ) ( ) ( ) ( )(( ) )
2 2 21 2 2 1t t X

n p p
H G H G k q q

t t t t
+æ ö æ ö æ ö

+ £ + + - - +ç ÷ ç ÷ ç ÷+ + + +è ø è ø è ø

i in V= {1, , }i kÎ ! ( ) ( )W G W Gl l+

0l >

( , ) 2Gd x y ³ ( , ) 2Gd x y ³

1

1
2

2

k
i

i

nl+

=

æ ö
ç ÷
è ø

å

1 2l+ 0l >

1

1 1
( ) ( ) 2 (1 2 )( )

22 2

k k
i i

X
i i

n nn
W G W G l l

l l
+

= =

æ ö æ öæ ö
+ ³ + + -ç ÷ ç ÷ç ÷

è øè ø è ø
å å

1
(1 2 ) (2 1)

2 2

k
i

i

nnl l

=

æ öæ ö
+ + - ç ÷ç ÷

è ø è ø
å

( ) ( )XW G W Gl l+ 0l >
1 2

k
i

i

n

=

æ ö
ç ÷
è ø

å

1
( )

2 2
p p

k q q
+æ ö æ ö

³ - +ç ÷ ç ÷
è ø è ø

!

6 6 4 6 6 6 6 4 6 6, , , , , , , , , ,C C C C C C C C C C! [ , ]NP n n



in Figure 1. 

 
Figure 1. The molecular structure of  

By graph structure analysis, we see that  and 

. The main result in this subsection is stated as 

follows. 

Theorem 3. The reverse eccentric connectivity index of haphthylenic lattices  

is: 

If , then 

=  
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If , then 

=  

 

 

. 

Proof. We discuss the reverse eccentric connectivity index according to the parity of n. 

As we see in Figure 2 and Figure 3, there are different vertex types for even n and odd n. 

We only analyze the half of  by its symmetry structure.  

 

Figure 2. The eccentricity computing of  with  
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Figure 3. The eccentricity computing of  with  

For , the classes of vertices can be summarized as follows: 

,  and there are 2 such vertices; 

,  and there are 4 such vertices; 

,  and there are 2 such vertices; 

,  and there are 2 such vertices; 

,  and there are 2 such vertices; 

,  and there are 2 such vertices; 

,  and there are 2 such vertices; 

,  and there are 2 such vertices; 

,  and there are 2 such vertices; 

,  and there are 4 such vertices; 

,  and there are 4 such vertices; 

,  and there are 2 such vertices; 

,  and there are 6 such vertices; 
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,  and there are 4 such vertices; 

,  and there are 2 such vertices; 

,  and there are 8 such vertices; 
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,  and there are  such vertices; 
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… 

,  and there are  such vertices; 
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… 
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,  and there are 2 such vertices. 
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,  and there are 2 such vertices; 

,  and there are 4 such vertices; 
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,  and there are 12 such vertices; 
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,  and there are 3 such vertices; 

,  and there are 1 such vertices. 

    Finally, the expected result is obtained according to the above vertex classification, 

the symmetry of molecular graph, and the definition of reverse eccentric connectivity 

index.                                                                 

 

3. Conclusion 

In this paper, by means of molecular graph structure analysis and distance 

calculation, we report the Nordhaus-Gaddum-type inequalities for bipartite molecular 

structure and the reverse eccentric connectivity index of haphthylenic lattice. These 
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•

•
7 3( )
2
nec v +

= ( ) 9S v =

•
7 1( )
2
nec v +

= ( ) 9S v =

•
7 1( )
2
nec v -

= ( ) 9S v =

!



theoretical conclusions obtained in our paper reveal the biological characteristic of these 

molecular structures and possess the promising prospects of biology, material and 

pharmaceuticals engineering applications. 
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