TOPOLOGICAL ENTROPY OF CONTINUOUS SELF–MAPS ON CLOSED SURFACES

JUAN LUIS GARCÍA GUIRAO¹ AND JAUME LLIBRE² AND WEI GAO^{1,3}

ABSTRACT. The objective of the present work is to present sufficient conditions for having positive topological entropy for continuous self–maps defined on a closed surface by using the action of this map on the homological groups of the closed surface.

1. INTRODUCTION

Along this work by a closed surface we denote a connected compact surface with or without boundary, orientable or not. More precisely, an orientable connected compact surface without boundary of genus $g \ge 0$, \mathbb{M}_g , is homeomorphic to the sphere if g = 0, to the torus if g = 1, or to the connected sum of g copies of the torus if $g \ge 2$. An orientable connected compact surface with boundary of genus $g \ge 0$, $\mathbb{M}_{g,b}$, is homeomorphic to \mathbb{M}_g minus a finite number b > 0 of open discs having pairwise disjoint closure. In what follows $\mathbb{M}_{g,0} = \mathbb{M}_g$.

A non-orientable connected compact surface without boundary of genus $g \geq 1$, \mathbb{N}_g , is homeomorphic to the real projective plane if g = 1, or to the connected sum of g copies of the real projective plane if g > 1. A non-orientable connected compact surface with boundary of genus $g \geq 1$, $\mathbb{N}_{g,b}$, is homeomorphic to \mathbb{N}_g minus a finite number b > 0 of open discs having pairwise disjoint closure. In what follows $\mathbb{N}_{g,0} = \mathbb{N}_g$.

Let $f : \mathbb{X} \to \mathbb{X}$ be a continuous map on a closed surface \mathbb{X} . A point $x \in \mathbb{X}$ is periodic of period n if $f^n(x) = x$ and $f^k(x) \neq x$ for $k = 1, \ldots, n-1$.

The topological entropy of a continuous map $f : \mathbb{X} \to \mathbb{X}$ denoted by h(f) is a non-negative real number (possibly infinite) which measures how much f mixes up the phase space of \mathbb{X} . When h(f) is positive the dynamics of the system is said to be *complicated* and the positivity of h(f) is used as a measure of the so called *topological chaos*.

Here we introduce the topological entropy using the definition of Bowen [4].

Key words and phrases. Closed surface, continuous self–map, Lefschetz fixed point theory, periodic point, set of periods.

²⁰¹⁰ Mathematics Subject Classification: 58F20, 37C05, 37C25, 37C30.

Since it is possible to embedded any surface orientable or not in \mathbb{R}^4 by the Whitney immersion theorem see [11], we consider the distance between two points of X as the distance of these two points in \mathbb{R}^4 . Now, we define the distance d_n on G by

$$d_n(x,y) = \max_{0 \le i \le n} d(f^i(x), f^i(y)), \quad \forall x, y \in G.$$

A finite set S is called (n, ε) -separated with respect to f if for different points $x, y \in S$ we have $d_n(x, y) > \varepsilon$. We denote by S_n the maximal cardinality of an (n, ε) -separated set. Define

$$h(f,\varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log S_n.$$

Then

$$h(f) = \lim_{\varepsilon \to 0} h(f,\varepsilon)$$

is the topological entropy of f.

We have chosen the definition by Bowen because, probably it is the shorter one. The classical definition was due to Adler, Konheim and McAndrew [1]. See for instance the book of Hasselblatt and Katok [7] and [3] for other equivalent definitions and properties of the topological entropy. See [1, 2, 12] for more details on the topological entropy.

Our main results are the following.

Theorem 1. Let \mathbb{M}_g be an orientable connected compact surface without boundary of genus g. Then the following statements hold.

- (a) If the degree $d \notin \{-1, 0, 1\}$, then the topological entropy of f is positive.
- (b) If the degree d ∈ {-1,0,1}, 2g is even and the number of roots of the characteristic polynomial of f_{*1} equal to ±1 or 0 taking into account their multiplicities is not even, then the topological entropy of f is positive.
- (c) If the degree $d \in \{-1, 0, 1\}$, 2g is odd and the number of roots of the characteristic polynomial of f_{*1} equal to ± 1 or 0 taking into account their multiplicities is not odd, then the topological entropy of f is positive.

Theorem 2. Let $\mathbb{M}_{g,b}$, b > 0, be an orientable connected compact surface with boundary of genus g. Then the following statements hold.

- (a) If 2g + b 1 is even and the number of roots of the characteristic polynomial of f_{*1} equal to ± 1 or 0 taking into account their multiplicities is not even, then the topological entropy of f is positive.
- (b) If 2g + b 1 is odd and the number of roots of the characteristic polynomial of f_{*1} equal to ± 1 or 0 taking into account their multiplicities is not odd, then the topological entropy of f is positive.

Theorem 3. Let $\mathbb{N}_{g,b}$, $b \ge 0$, be a non-orientable connected compact surface with boundary of genus g. Then the following statements hold.

- (a) If g + b 1 is even and the number of roots of the characteristic polynomial of f_{*1} equal to ± 1 or 0 taking into account their multiplicities is not even, then the topological entropy of f is positive.
- (b) If g+b−1 is odd and the number of roots of the characteristic polynomial of f_{*1} equal to ±1 or 0 taking into account their multiplicities is not odd, then the topological entropy of f is positive.

2. Lefschetz zeta functions for surfaces

Let f be a continuous self-map defined on $\mathbb{M}_{g,b}$ or $\mathbb{N}_{g,b}$, respectively. For a closed surface the homological groups with coefficients in \mathbb{Q} are linear vector spaces over \mathbb{Q} . We recall the homological spaces of $\mathbb{M}_{g,b}$ with coefficients in \mathbb{Q} , i.e.

$$H_k(\mathbb{M}_{a,b},\mathbb{Q}) = \mathbb{Q} \oplus \overset{n_k}{\ldots} \oplus \mathbb{Q},$$

where $n_0 = 1$, $n_1 = 2g$ if b = 0, $n_1 = 2g + b - 1$ if b > 0, $n_2 = 1$ if b = 0, and $n_2 = 0$ if b > 0; and the induced linear maps $f_{*k} : H_k(\mathbb{M}_{g,b}, \mathbb{Q}) \to H_k(\mathbb{M}_{g,b}, \mathbb{Q})$ by f on the homological group $H_k(\mathbb{M}_{g,b}, \mathbb{Q})$ are $f_{*0} = (1)$, $f_{*2} = (d)$ where d is the *degree* of the map f if b = 0, $f_{*2} = (0)$ if b > 0, and $f_{*1} = A$ where A is an $n_1 \times n_1$ integral matrix (see for additional details [10, 13]).

We recall that the homological groups of $\mathbb{N}_{g,b}$ with coefficients in \mathbb{Q} , i.e.

$$H_k(\mathbb{N}_{q,b},\mathbb{Q}) = \mathbb{Q} \oplus \overset{n_k}{\ldots} \oplus \mathbb{Q},$$

where $n_0 = 1$, $n_1 = g + b - 1$ and $n_2 = 0$; and the induced linear maps are $f_{*0} = (1)$ and $f_{*1} = A$ where A is an $n_1 \times n_1$ integral matrix (see again for additional details [10, 13]).

Let $f : \mathbb{X} \to \mathbb{X}$ be a continuous map and let \mathbb{X} be either $\mathbb{M}_{g,b}$ or $\mathbb{N}_{g,b}$. Then the *Lefschetz number* of f is defined by

$$L(f) = \operatorname{trace}(f_{*0}) - \operatorname{trace}(f_{*1}) + \operatorname{trace}(f_{*2}).$$

We shall use the Lefschetz numbers of the iterates of f, i.e. $L(f^n)$. In order to study the whole sequence $\{L(f^n)\}_{n\geq 1}$ it is defined the formal Lefschetz zeta function of f as

$$Z_f(t) = \exp\left(\sum_{n=1}^{\infty} \frac{L(f^n)}{n} t^n\right)$$

The Lefschetz zeta function is in fact a generating function for the sequence of the Lefschetz numbers $L(f^n)$.

From the work of Franks in [6] we have for a continuous self–map of a closed surface that its Lefschetz zeta function is the rational function

(1)
$$Z_f(t) = \frac{\det(I - tf_{*1})}{\det(I - tf_{*0})\det(I - tf_{*2})},$$

where in $I - tf_{*k}$ the I denotes the $n_k \times n_k$ identity matrix, and $\det(I - tf_{*2}) = 1$ if $f_{*2} = (0)$. Then for a continuous map $f : \mathbb{M}_{g,b} \to \mathbb{M}_{g,b}$ we have

$$Z_f(t) = \begin{cases} \frac{\det(I - tA)}{(1 - t)(1 - dt)} & \text{if } b = 0, \\ \frac{\det(I - tA)}{1 - t} & \text{if } b > 0, \end{cases}$$

and for a continuous map $f : \mathbb{N}_{g,b} \to \mathbb{N}_{g,b}$ we have

$$Z_f(t) = \frac{\det(I - tA)}{1 - t}$$

3. Basic results

In this section we present the main result stated in Theorem 7 for proving Theorems 1, 2 and 3. Since its proof is short and important for this work we provide it here.

For a polynomial H(t) we define $H^*(t)$ by

$$H(t) = (1-t)^{\alpha} (1+t)^{\beta} t^{\gamma} H^{*}(t),$$

where α , β and γ are non-negative integers such that 1 - t, 1 + t and t do not divide $H^*(t)$.

The spectral radii of the maps f_{*k} are denoted $\operatorname{sp}(f_{*k})$, and they are equal to the largest modulus of all the eigenvalues of the linear map f_{*k} . The spectral radius of f_* is

$$\operatorname{sp}(f_*) = \max_{k=0,\dots,m} \operatorname{sp}(f_{*k}).$$

The next result is due to Manning [9].

Theorem 4. Let $f : X \to X$ be a continuous map on a closed surface X. Then $\log \max\{1, \operatorname{sp}(f_{*1})\} \leq h(f)$.

Lemma 5. Let $f : \mathbb{X} \to \mathbb{X}$ be a continuous map and let \mathbb{X} be a closed surface. If the topological entropy of f is zero, then all the eigenvalues of the induced homomorphism f_{*1} are zero or root of unity.

Proof. Since the topological entropy is zero, by Theorem 4 we have $sp(f_{*1}) = 1$. So, all the eigenvalues of f_{*1} have modulus in the interval [0, 1] and at least one of them is 1. Then the characteristic polynomial of f_{*1} is of the form $t^m p(t)$, where m is a non-negative integer, positive if the zero is an eigenvalue. And p(t) is a polynomial with integer coefficients and whose independent term a_0 is non-zero. Since the product of all non-zeros eigenvalues of f_{*1} is the integer a_0 and, these eigenvalues have modulus in (0, 1], we have that any of these eigenvalues can have modulus smaller than one, otherwise we are in contradiction with the fact a_0 is an integer. In short, all the non-zero eigenvalues have modulus one, and consequently $a_0 = 1$. Since if a polynomial has integer coefficients, constant term 1 and all of whose roots have modulus 1, then all of its roots are roots of unity, see [14], the lemma follows. \Box

The n-th cyclotomic polynomial is defined by

$$c_n(t) = \prod_k (w_k - t),$$

being $w_k = e^{2\pi i k/n}$ a primitive *n*-th root of unity and where *k* runs over all the relative primes $\leq n$. See [8] for the properties of these polynomials.

For a positive integer *n* the *Euler function* is $\varphi(n) = n \prod_{p|n,p \text{ prime}} \left(1 - \frac{1}{p}\right)$.

It is known that the degree of the polynomial $c_n(t)$ is $\varphi(n)$. Note that $\varphi(n)$ is even for n > 2.

A proof of the next result can be found in [8].

Proposition 6. Let ξ be a primitive *n*-th root of the unity and P(t) a polynomial with rational coefficients. If $P(\xi) = 0$ then $c_n(t)|P(t)$.

The proofs of our results are strongly based in the next theorem.

Theorem 7 (Theorem 3.2 of [5]). Let \mathbb{X} be a closed surface, $f : \mathbb{X} \to \mathbb{X}$ be a continuous self-map, and let $\mathcal{Z}_f(t) = P(t)/Q(t)$ be its Lefschetz zeta function. If $P^*(t)$ or $Q^*(t)$ has odd degree, then the topological entropy of f is positive.

Proof. From the definitions of a polynomial H^* and of the Lefschetz zeta function we have

$$\mathcal{Z}_f(t) = \frac{P(t)}{Q(t)} = (1-t)^a (1+t)^b t^c \frac{P^*(t)}{Q^*(t)},$$

where a, b and c are integers.

Assume now that the topological entropy h(f) = 0. Then by Lemma 5 all the eigenvalues of the induced homomorphisms f_{*1} 's are zero or roots of unity. Therefore, by (1) all the roots of the polynomials $P^*(t)$ and $Q^*(t)$ are roots of the unity different from ± 1 and zero. Hence, by Proposition 6 the polynomials $P^*(t)$ and $Q^*(t)$ are product of cyclotomic polynomials different from $c_1(t) = 1 - t$ and $c_2(t) = 1 + t$. Consequently $P^*(t)$ and $Q^*(t)$ have even degree because all the cyclotomic polynomials which appear in them have even degree due to the fact that the Euler function $\varphi(n)$ for n > 2 only takes even values. But this is a contradiction with the assumption that $P^*(t)$ or $Q^*(t)$ has odd degree. \Box

4. Proof of Theorems 1, 2 and 3

Proof of Theorem 1. Since \mathbb{M}_g is an orientable connected compact surface without boundary of genus g, then the Lefschetz zeta function of f is equal to

$$Z_f(t) = \frac{\det(I - tA)}{(1 - t)(1 - dt)},$$

where d is the degree of f and 2g is the dimension of the characteristic polynomial det(I-tA) of $f_{*1} = A$. Note here that if $d \notin \{-1, 0, 1\}$, then $Q^*(t) = 1-dt$ and therefore by Theorem 7 statement (a) of Theorem 1 is proved.

Assume now that $d \in \{-1, 0, 1\}$. Note that in this case Q(t) = (1-t)(1-dt)and $Q^*(t) = 1$. So, by Theorem 7 the main role will be play by the 2g degree polynomial $P(t) = \det(I - tA)$ where $f_{*1} = A$. If 2g is even and the number of roots of the characteristic polynomial of f_{*1} equal to ± 1 or 0 taking into account their multiplicities is not even, then $P^*(t)$ has odd degree. Therefore, statement (b) of Theorem 1 follows by the application of Theorem 7.

On the other hand, if 2g is odd and the number of roots of the characteristic polynomial of f_{*1} equal to ± 1 or 0 taking into account their multiplicities is not odd then, $P^*(t)$ has odd degree and as before the proof of statement (c) of Theorem 1 follows.

Proof of Theorem 2. Note now, since $\mathbb{M}_{g,b}$ is an orientable connected compact surface with boundary (b > 0) of genus g, then the Lefschetz zeta function of f is equal to

$$Z_f(t) = \frac{\det(I - tA)}{1 - t}$$

being 2g + b - 1 the degree of the characteristic polynomial det(I - tA) of $f_{*1} = A$. Now the proof is similar to the statements (b) and (c) of Theorem 1.

Proof of Theorem 3. For a non-orientable connected compact surface with or without boundary $(b \ge 0)$ of genus $g \ge 1$, the Lefschetz zeta function of f is equal to

$$Z_f(t) = \frac{\det(I - tA)}{1 - t}$$

being g + b - 1 the degree of the characteristic polynomial det(I - tA) of $f_{*1} = A$. Then the proof if this theorems follows in a similar way to the proof of statements (b) and (c) of Theorem 1.

Acknowledgements

The second author is partially supported by the Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación grants MTM-2016-77278-P (FEDER) and MDM-2014-0445, the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

References

- R.L. ADLER, A.G. KONHEIM AND M.H. MCANDREW, *Topological entropy*, Trans. Amer. Math. Soc. **114** (1965), 309–319.
- [2] L. ALSEDA, J. LLIBRE AND M. MISIUREWICZ, Combinatorial dynamics and entropy in dimension one, Second edition, Advanced Series in Nonlinear Dynamics Vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
- [3] F. BALIBREA, On problems of Topological Dynamics in non-autonomous discrete systems, Applied Mathematics and Nonlinear Sciences 1(2) (2016), 391–404.
- [4] R. BOWEN, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414; erratum: Trans. Amer. Math. Soc. 181 (1973), 509– 510.
- [5] J. CASASAYAS, J. LLIBRE AND A. NUNES, Algebraic properties of the Lefschetz zeta function, periodic points and topological entropy, Publicacions Mathemàtiques 36 (1992), 467–472.
- [6] J. FRANKS, Homology and Dynamical Systems, CBMS Regional Conf. Series, vol. 49, Amer. Math. Soc., Providence R.I., 1982.
- [7] B. HASSELBLATT AND A. KATOK, Handbook of dynamical systems, Vol. 1A. North-Holland, Amsterdam, 2002.
- [8] S. LANG, Algebra, Addison-Wesley, 1971.
- [9] A. MANNING, Topological entropy and the first homology group, in Dynamical systems - Warwick 1974, Lecture Notes in Math 468, Springer-Verlag, Berlin, 1975, 185–190.
- [10] J.R. MUNKRES, *Elements of Algebraic Topology*, Addison–Wesley, 1984.
- [11] A. SKOPENKOV, Embedding and knotting of manifolds in Euclidean spaces, In: Surveys in Contemporary Mathematics, Ed. N. Young and Y. Choi, London Math. Soc. Lect. Notes., 347 (2): 248D342, (2008)
- [12] P. WALTERS, An Introduction to Ergodic Theory. Springer-Verlag, 1992.
- [13] J.W. VICKS, Homology theory. An introduction to algebraic topology, Springer-Verlag, New York, 1994. Academic Press, New York, 1973.
- [14] L.C. WASHINGTON, Introduction to cyclotomic fields, Springer, Berlin, 1982.

¹ Departamento de Matemática Aplicada y Estadística. Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain.

E-mail address: juan.garcia@upct.es

²Departament de Matemàtiques. Universitat Autònoma de Barcelona, Bellaterra, 08193-Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

³School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China

E-mail address: gaowei@ynnu.edu.cn