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This paper is concerned with the boundary control strategies of the fractional order
wave equation with the boundary subject to persistent external disturbances in Hilbert
spaces. By extending the sliding mode control approach to fractional order infinite-
dimensional systems, the fractional order boundary sliding mode control is designed for
the infinite dimensional setting. And based on the globally asymptotic stability theorem,
it’s applied for addressing the asymptotical stability of the state for the fractional order
wave equation with an uncertain boundary. Finally, numerical simulations are presented
to verify the viability and efficiency of the proposed fractional order controllers.
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1. Introduction

In practical engineering, many systems are described by partial differential equa-

tions, and these syetems are often subject to a significant degree of uncertainty.1

As a class of distributed parameter systems, wave equation has been studied suffi-

ciently. Over the past decade, the modeling and control of several classes of wave

process have been researched as a hot point, and there has been emerged a con-

siderable amount of results.2,3 In particular, when the external disturbance exists

on boundary, the boundary control has received a special attention.4–6 Therefore,

plentiful control methods has been applied to deal with the uncertainties such as

the internal model principle for output regulation, the adaptive control for systems

with unknown parameters, and the active disturbance rejection control method,

to name just a few. Smyshlyaev7 introduced a new integral transformation for
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wave equations and used it to obtain explicit controllers and observers for a wave

equation with negative damping at the boundary. Liu8 investigated a cascade of

ODE-wave systems with the control actuator matched disturbance at the boundary

of the wave equation by use of the sliding mode control (SMC) technique and the

active disturbance rejection control (ADRC) method to overcome the disturbance,

respectively.

It’s well-known that, when focused on the system with uncertainty and external

disturbance, sliding mode control (SMC) approach9–11 is a noted control technique.

The main advantage of the SMC is to switch the control law to force the states

of the system from the initial states onto some predefined sliding mode surface,

and the system on the sliding mode surface has desirable properties such as fast

response, low sensitivity to external noises, robustness to the system uncertainties,

and effortless realization and so on. Therefore, the sliding mode control has been

recognized as a powerful control method to exhibit strong properties of robustness

against significant classes of disturbances and model uncertainties, and has been

used to address the control problems of variable systems.12 Recently, a growing

interest has emerged in extending sliding mode control to infinite-dimensional sys-

tems, and the study of sliding mode control for the distributed parameter systems

has been a hot spot topic.1314

Due to the advantage and simplicity of implementation for the sliding mode

control method, it has widely been used in various situations. And in recent years,

it has been applied to deal with the boundary control of the wave process. Baccoli15

designed the combined twisting/PD algorithm which are shown to be capable of

regulating uncertain and perturbed wave and reaction-diffusion processes based on

the second-order sliding mode boundary control techniques. Yury Orlov16 designed

a boundary controller in an infinite dimensional systems setting based on a second-

order sliding mode control algorithm, and the controller has been shown to provide

for the regulation of an uncertain and perturbed wave process.

With the development of viscous-elastic material, it was shown that the viscous-

elastic damping can be described by fractional differential model, and many of the

physical laws are necessary to be described in terms of fractional calculus, thus,

much attention has been drawn to the study of fractional order damping,17 and

many systems and industrial processes in practical engineering are governed by

partial differential equations with fractional order operator, one of which is the

fractional order wave equation. The fractional order wave equations are such sys-

tems that are obtained from the classical wave equations by replacing the second-

order time derivative with a fractional order. And the robust control problem of

fractional order wave process has attracted the attention of scientists and engineers

from many fields such as mathematics, physics and engineering,18–20 in particu-

lar, the boundary control of the fractional order wave equations. Pisano et al.21

extended the so-called twisting and supertwisting 2-SM control algorithms to glob-

ally asymptotically stabilize uncertain wave and, respectively, heat equations under

Dirichlet and Neumann boundary conditions. Dai et al.22 considered the wave equa-
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tion with boundary source term and fractional boundary dissipation, and proved the

exponential growth for sufficiently large initial data. Liang et al.23 investigated the

integer order and fractional order boundary control laws of a fractional order wave

equation. Based on the delayed boundary measurements and the Smith predict, the

boundary controller was designed. Besides, for the first time, the authors confirmed

that small time delay in boundary control law could destabilize the controlled sys-

tem through extensive hybrid symbolic and numerical simulation, combined with

parameter optimization; In Ref.,24 Liang et al. considered a boundary controller at

the boundary for the one-dimensional fractional diffusion-wave equation and con-

firmed the existing schemes that were focused on the boundary stabilization and

disturbance rejection for integer order wave equations, which were still valid for

fractional order diffusion-wave equations via hybrid symbolic and numerical simu-

lation studies. Mbodje et al.25 studied the wave equation with fractional derivative

feedback at the boundary and proved the asymptotic decay of the solution. How-

ever, up to now, there are few achievements involving the boundary control of the

fractional order wave equation via sliding mode approach when the external dis-

turbance on boundary exists. Motivated by the boundary control of integer order

wave equations and the challenge in the design of control strategies for distributed

parameter systems,16 this paper mainly focuses on the boundary control of wave

equation with fractional order derivative.

The rest of the paper is outlined as follows. In Section 2, basic definitions and

preliminaries for the boundary control of the wave process are provided. Section 3

is devoted to introducing the boundary control of wave process, and showing that

it can guarantees the global asymptotic stability of the system. In Section 4, simu-

lation example is presented to illustrate the effectiveness of the proposed methods.

Section 5 discusses the main features of the developed schemes and the promising

direction of investigation for possible extensions of the obtained results. The last

section concludes the obtained results of the present paper.

2. Basic definitions and preliminaries

The notation used in this paper is fairly standard. H l(0, 1) with l = 0, 1, 2, ...,

denotes the Sobolev space of defined on (0, 1), and H0(0, 1) = L2(0, 1) =

{
z :

||z(·)||2 =
√∫ 1

0
z2(τ)dτ

}
stands for the square integrable functions space and

L∞(0, 1) is a subspace of L2(0, 1) with the norm ||z(·)||∞ = max0≤t≤1 z(t), for

the detail, see Ref.26

Consider a class of uncertain infinite dimensional systems which is governed by

a perturbed version of the wave equation:

CDαy(x, t) = θyxx(x, t) (2.1)

y(x, 0) = y0(x) ∈ H2(0, 1), yt(x, 0) = y0t (x) ∈ H2(0, 1) (2.2)
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yx(0, t) = c0D
r
t y(0, t), yx(1, t) = u(t) + ψ(t) (2.3)

Here (2.2) is the initial condition, (2.3) is the controlled and perturbed Neu-

mann boundary condition. u(t) ∈ L2(0, 1) is the boundary control input and

ψ(t) ∈ L2(0, 1) represents an uncertain disturbance source term. And c0 is a positive

constant, CDα
t , 1 < α ≤ 2, r = α/2 is the Caputo-type fractional order derivative,

x ∈ [0, 1] is the one dimensional space variable, t > 0 is the time variable. The co-

efficient θ ∈ R stands for the elasticity. Let H = L2(0, 1)× L2(0, 1) equipped with

the norm ||(y,CDt
α/2

y)||H = ||y(·, t)||2 + ||CDt
α/2

y(·, t)||2, where (y,CDt
r
y) ∈ H.

Recent years, considerable interest has been shown in the so-called fractional cal-

culus, such interest has been stimulated by the applications that this calculus finds

in different areas of physics and engineering, possibly including fractal phenomena.

And the calculus generalizes some basic topics of classical mathematical physics,

which are treated by simple, linear, ordinary or partial differential equations. The

fractional order wave equation is an evolution equation of order 1 < α < 2 which

continues to the wave equation when α→ 2.

The fractional derivative and fractional integral27,28 adopted in this paper are

the Caputo-type which are defined as following

Iqt x(t) =
1

Γ(q)

∫ t

0

(t− s)q−1x(s)ds, 0 < q < 1, (2.4)

and

CDq
tx(t) =

1

Γ(1− q)

∫ t

0

(t− s)−qx′(s)ds, 0 < q < 1. (2.5)

The following Lemmas which provides the basis for demonstrating the stability

of many fractional order systems was obtained by Jiang, Cao and Chen20

Lemma 2.1 Let x(t), y(t) ∈ L2(0, 1) be continuous and derivable functions.

Then, for any time instant t ≥ t0, the following inequality holds

CDγ(x(t)y(t)) ≤ x(t)CDγy(t) + y(t)CDγx(t). (2.6)

When the space variable x is fixed, the stability of the system (2.1) can be dealt

with by the following theorem which also assures the globally asymptotic stability

of the equilibrium of the fractional order system (2.1) in a finite time.

Theorem 2.1 Let x = 0 be an equilibrium point for the non-autonomous frac-

tional order system (2.1). Assume that there exists a Lyapunov function V (t, x)

satisfying the following conditions:

1) V (t, x) is positive definite;

2) CDγV (t, x) is negative definite;

3) V (t, x) has an infinite upper-bounded;

4) V (t, x) is radially unbounded;

where γ ∈ (0, 1). Then, the system (2.1) has global asymptotic stability;
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3. The boundary control for the wave equation

Assume that the state vector (y,CDr
t y) is available for measurements, then, y,CDr

t y

are also available for feedback. The following is an assumption about the distur-

bance.

Assumption 1 There exists a priori known constant M > 0 such that the

unknown disturbance satisfies the following inequality,

|ψ(t)| ≤M. (3.1)

The initial functions and admissible disturbances are specified by the following

assumption.

Assumption 2 The initial functions in the IC’s (2.2) are compatible to the

boundary condition in the BC’s (2.3)

y0x(0) = c0D
r
t y(0, t), y0x(1) = ψ(0).

In order to stabilize the dynamics (2.1), the discontinuous controller is designed

as follows:

u(t) = −λ1sign(y(1, t))− w1y(1, t)− λ2sign(Dr
t y(1, t))− w2D

r
t y(1, t) (3.2)

where u(0) = 0, r = α/2, w1 > 0, w2 > 0, λ1, λ2 ≥ 0 are constant control coeffi-

cients.

Due to the fractional derivative existed in the boundary control law in controller

(3.2), compared with the integer order operator, the fractional order derivative is

much more complicated due to the unique properties of fractional calculus, such

as non-locality, memory-dependence and the power-law. Thus, the fractional order

boundary control law has stronger adjustment ability.

From the representation of the controller(3.2), the controller is discontinuities

on the two manifolds y(1, t) = 0 and Dr
t y(1, t) = 0. Thus, the meaning of the

corresponding solutions has been given for the discontinuous system. Due to the

non-smooth of the controller (3.2), the precise meaning of the solutions can be

defined in the generalized sense listed as follows:

Definition 3.1 An absolutely continuous function yδ(·, t) ∈ L2(0, 1), defined on

[0, τ), is said to be an approximate δ−solution of the system(2.1) and (2.2)-(2.3)

under the controller (3.2) if it is a strong solution of the corresponding boundary

value problem with a continuous approximation uδ(·) substituted for the discontin-

uous control input (3.2) such that ||uδ − u||2 ≤ δ for all y1, y2 ∈ L2(0, 1) subject to

||y1||2 ≥ δ and ||y2||2 ≥ δ, respectively, where δ > 0.

Definition 3.2 An absolutely continuous function y(·, t) ∈ L2(0, 1), defined on

[0, τ), is said to be a generalized solution of the system (2.1) and (2.2)-(2.3) under

the controller (3.2) if there exists a family of approximate δ− solutions yδ(·, t) of

the corresponding boundary value problem such that limδ→0 ||yδ(·, t)−y(·, t)||2 = 0,

and limδ→0 ||CDγyδ(·, t)− CDγy(·, t)||2 = 0, uniformly in t ∈ [0, τ).
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Similar to the finite dimensional case, a sliding mode is defined as a motion

along the discontinuity manifold.

Remark 3.1 In the abstract framework of Hilbert space, the existence of gen-

eralized solutions has been established, whereas the uniqueness and well-posedness

appear to follow from the fact that, no sliding mode occurs except in the origin

y1 = y2 = 0.

Before giving the main results, we make the following assumptions about the

system parameters.

Assumption 3. λ2 > M .

Assumption 4. The parameters λ1, k2, k3, θ satisfy the following inequalities
λ1 >

√
Rk2
2θ2 ,

k2 + k3 < 1,

k3 < θ.

(3.3)

Assumption 5. Suppose the system parameters satisfy the next inequalities
λ2 > M + k2

√
2R
θ ,

k2 + ( 1
c0θ

+ c0)k3 < 2,

λ1 > M + λ2,

w1 >
c0
2 .

(3.4)

The following theorem claims the asymptotic stability of the generalized solu-

tions of the wave equation (2.1) and (2.2)-(2.3) under the control strategy (3.2).

Theorem 3.1 Consider the system (2.1) along with the ICs (2.2) and BCs (2.3),

and assume the parameters and external disturbance satisfy assumption 1, 2, 3, 4

and 5. Then, the control strategy (3.2) guarantees the exponential decay of ||y1(·, t)||2
and ||y2(·, t)||

2
of the solutions (2.1).

Proof. For simplifying the notation, the dependence of the system signals on the

space and variables (x, t) is omitted. Firstly, we choose the following Lyapunov

functional:

V1(t) = λ1θ|y(1, t)|+ 1

2
θw1y

2(1, t) +
1

2
‖Dry(·, t)‖2 +

1

2
θ‖yx(·, t)‖2 (3.5)

Then, taking its fractional derivative with respect to time along the solution of the

system (2.1) under the controller (3.2) and by the Lemma 2.1, we have

DrV1(t) ≤ λ1θsign(y(1, t))Dry(1, t) + θw1y(1, t)Dry(1, t) +

∫ 1

0

Dry(v, t)Dαy(v, t)dv

+θ

∫ 1

0

yx(v, t)Dryx(v, t)dv

= λ1θsign(y(1, t))Dry(1, t) + θw1y(1, t)Dry(1, t) + θ

∫ 1

0

Dry(v, t)yxx(v, t)dv
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+θ

∫ 1

0

yx(v, t)Dryx(v, t)dv

= λ1θsign(y(1, t))Dry(1, t) + θw1y(1, t)Dry(1, t) + θyx(1, t)Dry(1, t)

−θyx(0, t)Dry(0, t)− θ
∫ 1

0

yx(v, t)Dryx(v, t)dv + θ

∫ 1

0

yx(v, t)Dryx(v, t)dv

= λ1θsign(y(1, t))Dry(1, t) + θw1y(1, t)Dry(1, t) + θDry(1, t)[u(t) + ψ(t)]

−θc0[Dry(0, t)]2

= λ1θsign(y(1, t))Dry(1, t) + θw1y(1, t)Dry(1, t) + θDry(1, t)[−λ1sign(y(1, t))

−w1y(1, t)− λ2sign(Dr
t y(1, t))− w2D

r
t y(1, t)] + θDry(1, t)ψ(t)

−θc0[Dry(0, t)]2

= −λ2θ|Dry(1, t)| − w2θ|Dry(1, t)|2 + θDry(1, t)ψ(t)− θc0|Dry(0, t)|2

≤ −θ
[
(λ2 −M)|Dr

t y(1, t)|+ c0|Dry(0, t)|2 + w2|Dr
t y(1, t)|2

]
≤ 0. (3.6)

Based on the assumption 3, it implies that the Lyapunov functional V1(t) is a

non-increasing function with time, i,e

V1(t2) ≤ V1(t1),∀ t2 ≥ t1 ≥ 0.

Denote DR =
{

(y1, y2) ∈ H : V1(y1, y2) ≤ R
}

. Obviously, when an arbitrary

R ≥ V1(0) is fixed, the obtained domain DR is proved to be invariant. For the

purposes of the analysis below, we will consider that the states (y1, y2) belong to

the domain DR starting from the initial time t = 0.

It’s clear that the following inequalities hold

|y(1, t)| ≤ R

λ1θ
, ‖Dry(·, t)‖2 ≤ 2R, ‖yx(·, t)‖2 ≤ 2R

θ
, (3.7)

Now we take into account the augmented functional

V2(t) = V1(t) +
1

2
k2θw2y

2(1, t) + k2

∫ 1

0

y(1, t)Dry(v, t)dv

+ k3

∫ 1

0

(v − 1)yx(v, t)Dry(v, t)dv,

where the parameters k2 > 0, k3 > 0 are to be specified below and v ∈ [0, 1].

Then, it’s obtained that∣∣k2 ∫ 1

0

y(1, t)Dry(v, t)dv
∣∣ ≤ k2

∫ 1

0

|y(1, t)Dry(v, t)|dv

≤ k2
2

∫ 1

0

[
y2(1, t) + (Dry(v, t))2

]
dv

=
k2
2
y2(1, t) +

k2
2
‖Dry(·, t)‖2

≤ Rk2
2λ1θ

|y(1, t)|+ k2
2
‖Dry(·, t)‖2. (3.8)
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Due to maxv∈[0,1] |v − 1| = 1, the following equalities hold

|k3
∫ 1

0

(v − 1)yx(v, t)Dry(v, t)dv| = k3
∣∣ ∫ 1

0

(v − 1)yx(v, t)Dry(v, t)dv
∣∣ (3.9)

≤ k3|
∫ 1

0

yx(v, t)Dry(v, t)dv|

≤ k3
2
||yx(·, t)||2 +

k3
2
||Dry(·, t)||2.

Thus, the augmented functional V2(t) has the following inequality

V2(t) ≥ V1(t) +
1

2
k2θw2y

2(1, t)− Rk2
2λ1θ

|y(1, t)| − k2
2
||Dry(·, t)||2

−k3
2
||yx(·, t)||2 − k3

2
||Dry(·, t)||2

= (λ1θ −
Rk2
2λ1θ

)|y(1, t)|+ (
θw1

2
+
k2θw2

2
)y2(1, t)

+(
1

2
− k2

2
− k3

2
)||Dry(·, t)||2 + (

θ

2
− k3

2
)||yx(·, t)||2.

According to assumption 4, in the invariant domain DR, the augmented func-

tional V2(t) is positive definite and furthermore, since the parameters R can be se-

lected arbitrarily large, then, the augmented functional becomes radially unbounded

as R→ +∞. Besides,

V2(t) ≤ V1(t) +
1

2
k2θw2y

2(1, t) +
k2
2
y2(1, t) +

k2
2
||Dry(·, t)||2

+
k3
2
||yx(·, t)||20 +

k3
2
||Dry(·, t)||20

≤ λ1θ|y(1, t)|+ (
k2
2

+
1

2
θw1 +

1

2
k2θw2)y2(1, t) + (

1

2
+
k2
2

+
k3
2

)||Dry(·, t)||20

+(
k3
2

+
θ

2
)||yx(·, t)||20.

Then, it implies that the augmented functional V2(t) has an infinite upper-bounded.

Taking V2(t) with r fractional derivative with respect to time along the solution

of the system, then

DrV2(t) ≤ DrV1(t) + k2θw2y(1, t)Dry(1, t) + k2D
ry(1, t)

∫ 1

0

Dry(v, t)dv (3.10)

+k2

∫ 1

0

y(1, t)D2ry(v, t)dv + k3

∫ 1

0

(v − 1)Dryx(v, t)Dry(v, t)dv

+k3

∫ 1

0

(v − 1)yx(v, t)D2ry(v, t)dv,

≡ DrV1(t) + k2θw2y(1, t)Dry(1, t) +K1 +K2 +K3,

which the third term can be reduced to the following corresponding inequality

|K1| =
∣∣∣∣k2Dry(1, t)

∫ 1

0

Dry(v, t)dv

∣∣∣∣ ≤ k2|Dry(1, t)|
∫ 1

0

|Dry(v, t)|dv (3.11)
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≤ k2|Dry(1, t)|||Dry(·, t)dv||0
≤ k2

√
2R|Dry(1, t)|,

and the fourth term can be simplified into the following inequality

K2 = k2

∫ 1

0

y(1, t)D2ry(v, t)dv = k2

∫ 1

0

y(1, t)θyxxdv

= k2θy(1, t)yx(1, t)− k2θy(1, t)yx(0, t)

= k2θy(1, t)[u(t) + ψ(t)]− k2θc0y(1, t)Dry(0, t)

= k2θy(1, t)ψ(t)− k2θλ1y(1, t)sign(y(1, t))− k2θw1y
2(1, t)

−k2θλ2y(1, t)sign(Dry(1, t))− k2θw2y(1, t)Dry(1, t)

−k2θc0y(1, t)Dry(0, t),

then, because of the following inequality holding

|k2θy(1, t)ψ(t)| ≤ k2θM |y(1, t)|

|k2θy(1, t)sign(Dry(1, t))| ≤ k2θ|y(1, t)|

|k2θc0y(1, t)Dry(0, t)| ≤ 1

2
k2θc0|Dry(0, t)|2 +

1

2
k2θc0|y(1, t)|2.

Thus, the fourth term of inequality (3.10) can be finally reduced to the following

inequality

|K2| = |k2
∫ 1

0

y(1, t)D2ry(v, t)dv| ≤ k2θM |y(1, t)| − k2θλ1|y(1, t)| − k2θw1y
2(1, t) (3.12)

+k2θλ2|y(1, t)| − k2θw2y(1, t)Dry(1, t) +
1

2
k2θc0y

2(1, t)

+
1

2
k2θc0|Dry(0, t)|2.

For the fifth and sixth term of inequality (3.10), it can be obtained that

K3 = k3

∫ 1

0

(v − 1)Dryx(v, t)Dry(v, t)dv + k3

∫ 1

0

(v − 1)yx(v, t)D2ry(v, t)dv

= k3

∫ 1

0

(v − 1)Dryx(v, t)Dry(v, t)dv + k3θ

∫ 1

0

(v − 1)yx(v, t)yxx(v, t)dv

= k3

∫ 1

0

vDryx(v, t)Dry(v, t)dv − k3
∫ 1

0

Dryx(v, t)Dry(v, t)dv

+k3θ

∫ 1

0

vyx(v, t)y
xx

(v, t)dv − k3θ
∫ 1

0

yx(v, t)y
xx

(v, t)dv, (3.13)

≡ K31 −K32 +K33 −K34.

which each of the terms can be simplified into the following equalities respectively:

The first term of inequality (3.13) is reduced into the following form

K31 = k3

∫ 1

0

vDryx(v, t)Dry(v, t)dv =
k3
2

∫ 1

0

vd[Dry(v, t)]2
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=
k3
2
v[Dry(v, t)]2|10 −

k3
2
||Dry(·, t)||2

=
k3
2

[Dry(1, t)]2 − k3
2
||Dry(·, t)||2.

The second term of inequality (3.13) is reduced into the following form

K32 = k3

∫ 1

0

Dryx(v, t)Dry(v, t)dv =
k3
2

[Dry(v, t)]2|10 =
k3
2

[Dry(1, t)]2 − k3
2

[Dry(0, t)]2.

The third term of inequality (3.13) is reduced into the following form

K33 = k3θ

∫ 1

0

vyx(v, t)yxx(v, t)dv =
k3θ

2

∫ 1

0

vd[yx(v, t)]2

=
k3θ

2
v[yx(v, t)]2|10 −

k3θ

2
||yx(·, t)||2

=
k3θ

2
y2x(1, t)− k3θ

2
||yx(·, t)||2,

and the last term of inequality (3.13) is reduced into the following form

K34 = k3θ

∫ 1

0

yx(v, t)yxx(v, t)dv =
θk3
2
y2x(1, t)− θk3

2
y2x(0, t).

Then, we get

K3 =
k3
2

[Dry(0, t)]2 − k3
2
||Dry(·, t)||2 − k3θ

2
||yx(·, t)||2 +

θk3
2
y2x(0, t). (3.14)

Thus, together with (3.10), (3.11), (3.12) and (3.14), the functional V2(t) can be

simplified that

DrV2(t) ≤ DrV1(t) + k2θw2y(1, t)Dry(1, t) + k2
√

2R|Dry(1, t)|+ k2θM |y(1, t)|
−k2θλ1|y(1, t)| − k2θw1y

2(1, t) + k2θλ2|y(1, t)| − k2θw2y(1, t)Dry(1, t)

+
k2θc0

2
y2(1, t) +

k2θc0
2
|Dry(0, t)|2 +

k3
2

[Dry(1, t)]2 − k3
2
||Dry(·, t)||2

−k3
2

[Dry(1, t)]2 +
k3
2

[Dry(0, t)]2 +
k3θ

2
y2x(1, t)− k3θ

2
||yx(·, t)||2

−k3θ
2
y2x(1, t) +

k3θ

2
y2x(0, t)

≤ −θ[(λ2 −M)|Dry(1, t)|+ c0|Dry(0, t)|2 + w2|Dry(1, t)|2]

+k2
√

2R|Dry(1, t)|+ (k2θM − k2θλ1 + k2θλ2)|y(1, t)| − k2θw1y
2(1, t)

+
k2θc0

2
y2(1, t) + (

k2θc0
2

+
k3
2

)|Dry(0, t)|2

−k3
2
||Dry(·, t)||2 − k3θ

2
||yx(·, t)||2 +

k3θ

2
y2x(0, t)

= −[θ(λ2 −M)− k2
√

2R]|Dry(1, t)| − [c0θ −
k2θc0

2
− k3

2
− k3θc

2
0

2
]|Dry(0, t)|2

−θw2|Dry(1, t)|2 − [k2θλ1 − k2θM − k2θλ2]|y(1, t)|
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−(k2θw1 −
k2θc0

2
)y2(1, t)− k3

2
||Dry(·, t)||2 − θk3

2
||yx(·, t)||2.

Combing with the assumption 5, DrV2(t) is negative definite. Besides, the

Lyapunov functional V2(t) is radially unbounded as R → +∞, then, according to

Theorem 2.1, V (t) can be employed as a radially unbounded Lyapunov functional,

and thus, the theorem is completed.

4. Numerical simulation

In this part, the L2 approach29 is implemented to discrete the Caputo-derivative

operator. For the perturbed equation (2.1), the BCs and ICs are set as y0(x) =

10 + 5cos(4πx), y0t (x) = 2cos(2πx), θ = 5, c0 = 1. The disturbance is chosen as

ψ(t) = 1 + 2 sin(t) which meets the BCs, and the magnitude M of the disturbance

is estimated as M = 3. Then, for the controller (3.2), the parameters are set in

accordance with Assumption 2, 3, 4, 5 as λ1 = 20, λ2 = 10, w1 = 10, w2 =

10, R = 2, k2 = 0.5, k3 = 0.4. Here, the steps of space and time are taken as 0.02

and 0.002, respectively.

Figure 1 a) depicts the spatiotemporal profiles of y(x, t) with no boundary con-

trol, which implies the destabilizing of the disturbance effect. While, under the

controller (3.2), the state variables y(x, t) of the system converge to the origin with

the fractional order α = 1.8, which is described by Figure 1(b).

Fig. 1. (a): the solution y(x, t) of the wave equation with on boundary control at α = 1.8. (b):
the solution y(x, t) of the controlled wave equation under the controller (3.2) with α = 1.8.
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Due to the controller (3.2) involved with the fractional order operator, thus, the

behavior of the asymptotic stability for the fractional order wave equation under

the controller (3.2) is changed with the order of the fractional order derivative.

Figure 2 depicts the corresponding plots of the solution y(x, t) and the solution

||y(·, t)|| with α = 1.6, α = 1.8, α = 2. From the figure, we can see that the

solution of the controlled wave equation under the controller (3.2) converges to the

origin as confirmed in Theorem 3.1, and the boundary controller is verified viability

and efficiency. In addition, from Figure 2 (a), Figure 2 (b) and Figure 2 (c), we can

find that the state variable y(x, t) of the system converges to the origin more fast

with the increase of the fractional order α.

Fig. 2. (a), (b), (c): the solution y(x, t) of the controlled wave equation under the controller (3.2),
respectively with α = 1.6, α = 1.8, α = 2. (d): the different view of the solution ||y(·, t)|| of the
controlled wave equation (2.1).

Figure 3 demonstrates that the Dry(x, t) and ||Dry(·, t)|| of the fractional wave

equation under the controller (3.2) with α = 1.6, 1.8, 2 respectively, which for-

mulate the convergence of the solution of system (2.1) under control in the space

L2(0, 1)× L2(0, 1).
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Fig. 3. (a), (b), (c): the solution Dry(x, t) of the controlled wave equation under the controller
(3.2), respectively with α = 1.6, α = 1.8, α = 2. (d): the different view of the solution ||Dry(·, t)||
of the controlled wave equation (2.1).

5. Discussion

In the recent years, the controllability of fractional differential systems has become

active. For the various real world problems in physical and engineering sciences

when subject to abrupt changes at certain instants during the evolution process, the

fractional order distributed parameter systems have been used for the system model.

However, the controllability of such systems has not been extensively studied, in

particular, the boundary control when an uncertainty exists on boundary. Hence, it

is worthwhile to establish a robust control approach in order to provide a boundary

control system with the desired dynamics in the presence of plant uncertainties on

boundary. Furthermore, the sliding mode control theory for distributed parameter

systems needs to be developed urgently in order to provide an efficient, robust and

adaptive control approach for a wide class of distributed parameter systems.

This paper studies the boundary control strategies for the wave equation with

fractional derivative. Our results can be extended to study a wide class of dis-

tributed parameter systems with fractional derivative. But, it should be noted that

the discontinuous control requires that the state should be directly accessible for

measurement, which is too strong for the wave equation with fractional derivative

and make the proposed approaches of mainly theoretical interest. However, the de-

veloped methods open the way to further improvements, analogous to similar ones
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attained in the finite-dimensional setup, such as the boundary control and/or the

pointwise output measurement feed-back implementation of the proposed feedback

controllers, which will be addressed in future research activities.

6. Conclusions

In this paper, the boundary sliding mode control algorithm have been designed

for a fractional order wave equation, under Neumann boundary conditions with an

uncertain. The resulting schemes have been applied to solve the boundary control

problem of the fractional order uncertain wave equation, and the control algo-

rithms are extended to globally asymptotically stabilize the fractional order wave

equation with an uncertain boundary conditions. At last, the numerical simulations

are presented to verify the viability and efficiency of the proposed fractional order

controllers.

The main contributions can be summarized as follows:

(1) As an appropriate extension of the infinite dimensional integer order system, the

proposed control algorithm is focused on the infinite dimensional fractional order

system. The controller is associated with the fractional order parameter, which

influences the convergence rate of the proposed control algorithm.

(2) By means of appropriate Lyapunov functionals, the stability of the resulting

controlled wave equation under the boundary controller is proven in the L2−space

based on the fractional order globally asymptotic stability theorem .

(3) At last, numerical simulation is presented to verify the efficiency of the proposed

fractional controller.
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