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ABSTRACT
In this paper, the existence results of the solution and stability are focused for the
variable fractional order differential equation. In view of the definitions of three kinds
of Caputo variable fractional order operator, the existence of the solution for the
variable fractional order differential system is obtained by use of the Arzela-Ascoli
theorem. Moreover, some criterions for the Mittag-Leffler stability and asymptotical
stability of the variable fractional order differential system are proposed according
to the Fractional Comparison Principle.
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1. Introduction

Fractional calculus has been acknowledged extensively as a powerful tool to describe
the natural behavior and complex phenomena of practical problems in many research
fields, such as chemistry, engineering, mathematics, physics, material, finance, and so
on [1–7]. However, the constant fractional order calculus is not the ultimate tool to
model the phenomena in nature, the variable fractional order calculus is proposed as
a natural candidate to describe the complex dynamics problems. Lorenzo and Hart-
ley [8] gave the concept of variable fractional order operator in 1998. Whereafter, the
definition of variable order integral and differential as well as its applications in phys-
ical and engineering were deeply discussed in [9].

Roughly speaking, the main advantage of variable fractional order calculus operator
in dynamic system modeling is that it has adaptive memory for the past phenomena,
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and the variable fractional order derivatives and integrals are very useful for simulat-
ing temporal or spatial correlation phenomena [10]. Different authors have proposed
different definitions for variable fractional order differential operators, each of which
has a special meaning to meet the desired objectives [11]. Coimbra et al. [12] proposed
a new concept of variable order calculus by describing a simple problem in mechanics,
and gave a mathematical definition of variable fractional order differential operator
suitable for mechanical modeling. In [13], two definitions of VO fractional derivative
were introduced and compared in the analysis of abnormal relaxation process. Lyn-
nette et al. [14] have compared the definitions of Riemann- Liouville type, Caputo
type, Coimbra type and Marchaud type of variable fractional order operators. By us-
ing the selected variable fractional order operators, the significance of the order of
functions is related to the dynamic properties of viscoelastic oscillators. Recently, due
to its profound applications to many fields of science and technology, a series of re-
search hotspots such as the existence, uniqueness, stability and control of solutions of
differential operators with variable fractional order are presented [15–21].

Since the kernel of the variable fractional order operator contains a variable ex-
ponent, the variable fractional order operator is not invertible and cannot be simply
transformed into Volterra integral equations. Therefore, the research on the solution
of variable fractional order differential equations needs more precise and unique tech-
nical methods. Razminia et al. [15] studied the existence of solutions for a class of
generalized fractional differential equations with non-autonomous fractional order op-
erators, and the sufficient conditions for the existence of the solution of the equation
were obtained, but the conditions for the uniqueness of the solution of the equation
were not given. In the Ref [16], the existence and uniqueness of solutions were studied
for variable fractional order differential equations defined by Caputo-type fractional
operator, nevertheless, the order of the variable fractional order operator of Caputo
type was only related to the integral variable, and the irreversibility of the operator
with variable fractional order was neglected. For this reason, Zhang [17] transformed
the initial value problem of the variable fractional order differential equation into the
fixed point problem of the integral equation under the definition of Riemann- Liouville
type, and the existence of the solution for the integral equation was studied by means
of nonlinear functional analysis. Malesza et al. [18] studied the existence of solutions of
linear fractional order differential equations under the definition of Grunvald- Letnikov
type variable fractional order operator. Ref [19] was devoted to tackle the existence of
solutions for linear fractional differential equations with variable fractional order op-
erator defined by three different Grunvald-Letnikov operators. However, based on the
present research results, there has not been a systematic study on the existence and u-
niqueness of solutions for three kinds of variable fractional order differential equations
defined by Caputo-type variable fractional order operators.

The stability results of the constant order fractional differential systems provide an
important theoretical basis for the stability of the variable fractional order differential
systems [22–25]. But, it is more complex to study of the stability for the variable
fractional order differential systems based on the fact that complexity of variable
fractional order operators and the variety of definitions. To our best knowledge, there
hardly exists a systematic study on the stability for Caputo-type variable fractional
differential equations with the following form:{

C
0 D

q(t,x(t))
t x(t) = f(t, x(t)), t ∈ (0, T ],

x(0) = u0.
(1)
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where 0 < q1 ≤ q(t, x(t)) ≤ q2 < 1.
This paper is organized as follows. The rest of this section is used to recall some basic

definitions of variable order fractional calculus and some lemmas which are important
to derive the main result of this paper. Section 3 is devoted to study the existence
of the solution for the variable fractional order differential equation. In Section 4, the
stability of the variable order fractional order system are analyzed.

2. Preliminaries

To begin with, the definitions of variable order fractional derivative and fractional
integral are introduced.

Definition 2.1. [9] Three kinds of definition of variable order fractional integration
are defined as follows.
I.

I
q(t,x(t))
t x(t) =

1

Γ(q(t, x(t)))

∫ t

0
(t− s)q(t,x(t))−1x(s)ds, 0 < q(t, x(t)) < 1, (2)

II.

I
q(t,x(t))
t x(t) =

∫ t

0

(t− s)q(t−s,x(t−s))−1

Γ(q(t− s, x(t− s)))
x(s)ds, 0 < q(t, x(t)) < 1, t ∈ [0, T ], (3)

III.

I
q(t,x(t))
t x(t) =

∫ t

0

(t− s)q(s,x(s))−1

Γ(q(s, x(s)))
x(s)ds, 0 < q(t, x(t)) < 1, t ∈ [0, T ], (4)

provided the integration is point-wise defined, where Γ(·) is the Gamma function,
t ∈ [0, T ].

Definition 2.2. [9] The following is the definition of variable order fractional deriva-
tives in three different forms.
I.

C
0 D

q(t,x(t))
t x(t) =

1

Γ(1− q(t, x(t)))

∫ t

0
(t− s)−q(t,x(t))x′(s)ds, 0 < q(t, x(t)) < 1, (5)

II.

C
0 D

q(t,x(t))
t x(t) =

∫ t

0

(t− s)−q(t−s,x(t−s))

Γ(1− q(t− s, x(t− s)))
x′(s)ds, 0 < q(t, x(t)) < 1, t ∈ [0, T ],

(6)
III.

C
0 D

q(t,x(t))
t x(t) =

∫ t

0

(t− s)−q(s,x(s))

Γ(1− q(s, x(s)))
x′(s)ds, 0 < q(t, x(t)) < 1, t ∈ [0, T ], (7)

provided the integration is point-wise defined, where Γ(·) is the Gamma function,
t ∈ [0, T ].
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When q(t, x(t)) = q, which q is a constant, the above variable fractional order
operator presented in Definition 2.1 and Definition 2.2 is the usual Caputo constant
fractional order operators.

The following definitions and lemma are important to obtain the main results given
in section 3 and section 4.

Definition 2.3. The constant u0 is an equilibrium point of variable fractional order
system (1) if f(t, u0) = 0.

Definition 2.4. ( [26]) A continuous function α : [0, t)→ [0,∞) belongs to class-K if
it is strict increasing and α(0) = 0.

The next is the famous Arzela-Ascoli Theorem which is employed to prove the existence
of solution for system (1).

Lemma 2.5. ( [27])(Arzela-Ascoli) If a sequence {un(t)} ∈ C[0, T ] is uniformly
bounded and equicontinuous, then it has a uniformly convergent subsequence.

The following presents one of the characteristics of Caputo variable fractional order
calculus.

Unlike the Caputo constant fractional order calculus, the Caputo variable fractional
order calculus C

0 D
q(t,u(t)), Iq(t,u(t)) does not pervasively satisfy

Ip(t,x(t))Iq(t,x(t)) = Ip(t,x(t))+q(t,x(t)), C0 D
p(t,x(t))Ip(t,x(t))f(t) = f(t), (8)

which means the variable fractional order differential equation can not be transformed
into the equivalent integral equation. In order to overcome this obstacle, we propose
the following transforming sequence{
xn(t) = xn−1(t) +

∫ t−T

n

0
(t−s)−q(t,x(t))

Γ(1−q(t,x(t)))xn−1(s)ds− f [t,
∫ t−T

n

0 xn−1(s)ds+ u0], t ∈ (Tn , T ],

xn(t) = 0, t ∈ [0, Tn ].
(9)

3. The existence of the solution for the variable order differential system

Before giving the main result about the existence of the solution for the variable order
differential system (1), the following assumptions are made.

Assumption
(I): f , x are continuous functions from [0, T ]× R to R;
(II): q : [0, T ]×R→ (0, 1) is a continuous function;

The main result of this section is given in Theorem 3.1.

Theorem 3.1. Assume that assumption (I) and (II) hold, then the IVP (9) exists
one solution x̃(t) ∈ C[0, T ].

Proof. Let

T−q(t,x(t))

{
≤ ( 1

T )q2 , 0 < T < 1,
≤ 1, 1 ≤ T < +∞, (10)
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and

T = max{T−q2 , 1},

then T−q(t,x(t)) ≤ T . By Minkowsk’s inequality, the following holds

(ā+ b̄)r ≤ ār + b̄r. (11)

where ā, b̄ are non-negative constants in R, 0 < r < 1. Furthermore, when 0 < ā <
b̄ < 1, the function k̃(t) := āt − b̄t is decreasing for t ∈ (−1, 0).

Now, we claim that the sequence {xn(t)} defined by (9) is uniformly bounded on
[0, T ].

Obviously, for t ∈ [0, Tn ], {xn(t)} defined by (9) is uniformly bounded. Thus, in the

following, we need to verify that, for t ∈ (Tn , T ], the sequence {xn(t)} is uniformly
bounded.

Let G1 = max0≤t≤T |f(t, u0)|. For t ∈ [0, T ], x0 = 0 is uniformly bounded, then,

|x1(t)| = |f(t, u0)| < G1, t ∈ (
T

n
, T ],

which implies that x1(t), t ∈ [Tn , T ] is uniformly bounded.
In order to apply the method of the inductive hypothesis, we assume xn−1(t) is

uniformly bounded on [0, T ] and let

|xn−1(t)| ≤ Gn−1, Gf = max
0≤t≤T,|xn−1(t)|≤Gn−1

∣∣∣∣f(t,

∫ t

0
xn−1(s)ds+ u0)

∣∣∣∣
on t ∈ [0, T ], n = 1, 2, ....

According to the assumption (I), (II), then, Gf < +∞. Then, the following inequal-
ities hold

|xn(t)| ≤ |xn−1(t)|+
∫ t−T

n

0

∣∣∣∣ (t− s)−q(t,x(t))

Γ(1− q(t, x(t)))

∣∣∣∣|xn−1(s)|ds+

∣∣∣∣f(t,

∫ t−T

n

0
xn−1(s)ds+ u0)

∣∣∣∣
≤ Gn−1 +Gn−1

∫ t−T

n

0

∣∣∣∣ (t− s)−q(t,x(t))

Γ(1− q(t, x(t)))

∣∣∣∣ds+Gf

≤ Gn−1 +
Gn−1

Γ(1− q1)

∫ t−T

n

0
|(t− s)−q(t,x(t))|ds+Gf

≤ Gn−1 +
Gn−1

Γ(1− q1)

∫ t−T

n

0
|( t− s

T
)−q(t,x(t))|T−q(t,x(t))ds+Gf

≤ Gn−1 +
Gn−1

Γ(1− q1)
T

∫ t−T

n

0
(
t− s
T

)−q2ds+Gf

≤ Gn−1 +
Gn−1

Γ(1− q1)(1− q2)
TT +Gf = Gn,

where Gn = Gn−1 + Gn−1

Γ(1−q1)(1−q2)TT + Gf , which implies that xn(t) is uniformly

bounded on [Tn , T ]. Besides, xn(t) = 0 for t ∈ [0, Tn ), thus, it’s obtained that {xn(t)} is
uniformly bounded on [0, T ].
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The following is to verify the equi-continuity of the sequence {xn(t)}, t ∈ [0, T ].
It can be noticed that x0(t), t ∈ [0, T ] is equi-continuous. Set A = {xn(t);n ≥ 1},

we consider the following three kinds of situations.
(I): if 0 ≤ t1 ≤ t2 ≤ T

n , we have

lim
t1→t2

|xn(t2)− xn(t1)| = 0

which is independent of xn for each xn ∈ A.
(II): if 0 ≤ t1 < T

n < t2 ≤ T , we have

|xn(t2)− xn(t1)| = |xn−1(t2) +

∫ t2−T

n

0

(t2 − s)−q(t2,x(t2))

Γ(1− q(t2, x(t2)))
xn−1(s)ds

− f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)|

≤ |xn−1(t2)|+ Gn−1

Γ(1− q1)

∫ t2−T

n

0
T−q(t2,x(t2))(

t2 − s
T

)−q(t2,x(t2))ds

+ |f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)|

≤ |xn−1(t2)|+ Gn−1T

Γ(1− q1)

∫ t2−T

n

0
(
t2 − s
T

)−q2ds

+ |f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)|

≤ |xn−1(t2)| − Gn−1TT
q2

Γ(1− q1)(1− q2)
(
T

n
)(1−q2)

+
Gn−1TT

q2t1−q22

Γ(1− q1)(1− q2)
+ |f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)|,

for each xn ∈ A, which together with |x1(t2)− x1(t1)| = |f(t2, u0)| implies

lim
t2→t1

|x1(t2)− x1(t1)| = |f(0, u0)| = 0.

Based on the method of inductive hypothesis, we assume that

lim
t2→t1

|xn−1(t2)− xn−1(t1)| = 0,

then,

lim
t2→t1

|xn(t2)− xn(t1)| ≤ lim
t2→t1

|xn−1(t2)− xn−1(t1)|

+ lim
t2→t1

[
− Gn−1TT

q2

Γ(1− q1)(1− q2)
(
T

n
)(1−q2) +

Gn−1TT
q2t1−q22

Γ(1− q1)(1− q2)

]
+ lim
t2→t1

|f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)| = 0

which is independent of xn ∈ A.
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According to the assumption (I), f(t, x) is continuous with respect to t and x,

moreover, limt→T

n

∫ t−T

n

0 x(s)ds = 0 and f(Tn , u0) = 0. Then

lim
t→T

n

f(t,

∫ t−T

n

0
x(s)ds+ u0) = 0.

(III): for T
n ≤ t1 < t2 ≤ T , the following equality holds:

|x1(t2)− x1(t1)| = |f(t2, u0)− f(t1, u0)|.

Based on assumption (I), f(t, x) is a continuous function, then

lim
t2→t1

|x1(t2)− x1(t1)| = 0,

which is independent of x1 ∈ A. Supposing limt2→t1 |xn−1(t2)−xn−1(t1)| = 0, according
to (11) and the following inequalities, it can be obtained

|xn(t2)− xn(t1)|

≤ |xn−1(t2)− xn−1(t1)|+
∣∣∣∣ ∫ t2−T

n

0

(t2 − s)−q(t2,xn−1(t2))

Γ(1− q(t2, xn−1(t2)))
xn−1(s)ds

−
∫ t1−T

n

0

(t1 − s)−q(t1,xn−1(t1))

Γ(1− q(t1, xn−1(t1)))
xn−1(s)ds

∣∣∣∣+

∣∣∣∣f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)

− f(t1,

∫ t1−T

n

0
xn−1(s)ds+ u0)

∣∣∣∣
≤ |xn−1(t2)− xn−1(t1)|+

∣∣∣∣ ∫ t1−T

n

0

[
(t2 − s)−q(t2)

Γ(1− q(t2, xn−1(t2)))
− (t1 − s)−q(t1,xn−1(t1))

Γ(1− q(t1, xn−1(t1)))

]
· xn−1(s)ds

∣∣∣∣+

∣∣∣∣f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)− f(t1,

∫ t1−T

n

0
xn−1(s)ds+ u0)

∣∣∣∣
+

∣∣∣∣ ∫ t2−T

n

t1−T

n

(t2 − s)−q(t2,xn−1(t2))

Γ(1− q(t2, xn−1(t2)))
xn−1(s)ds

∣∣∣∣
≤ |xn−1(t2)− xn−1(t1)|+ Gn−1

Γ(1− q(t2, xn−1(t2)))

∫ t1−T

n

0

∣∣∣∣( t2 − sT
)−q(t2,xn−1(t2))−

(
t1 − s
T

)−q(t2,xn−1(t2))

∣∣∣∣T−q(t2,xn−1(t2))ds+Gn−1

∫ t1−T

n

0

∣∣∣∣((t1 − s)/T )−q(t2,xn−1(t2))

Γ(1− q(t2, xn−1(t2)))

− ((t1 − s)/T )−q(t2,xn−1(t2))

Γ(1− q(t1, xn−1(t1)))

∣∣∣∣T−q(t2,xn−1(t2))ds+Gn−1

∫ t1−T

n

0

∣∣∣∣ (t1 − s)−q(t2,xn−1(t2))

Γ(1− q(t1, xn−1(t1)))

− (t1 − s)−q(t1,xn−1(t1))

Γ(1− q(t1, xn−1(t1)))

∣∣∣∣ds+

∣∣∣∣f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)− f(t1,

∫ t1−T

n

0
xn−1(s)ds

+ u0)

∣∣∣∣+
Gn−1

Γ(1− q(t2, xn−1(t2)))

∣∣∣∣ ∫ t2−T

n

t1−T

n

(
t2 − s
T

)−q(t2,xn−1(t2))T−q(t2,xn−1(t2))ds

∣∣∣∣
≤ |xn−1(t2)− xn−1(t1)|+ TT q2Gn−1

Γ(1− q1)

∫ t1−T

n

0

∣∣∣∣(t1 − s)−q2 − (t2 − s)−q2
∣∣∣∣ds
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+

∣∣∣∣ TT q2Gn−1

Γ(1− q(t2, xn−1(t2)))
− TT q2Gn−1

Γ(1− q(t1, xn−1(t1)))

∣∣∣∣ ∫ t1−T

n

0
(t1 − s)−q2ds

+
Gn−1

Γ(1− q(t1, xn−1(t1)))

∣∣∣∣ ∫ t1−T

n

0

[
(t1 − s)−q(t2,xn−1(t2)) − (t1 − s)−q(t1,xn−1(t1))

]
ds

∣∣∣∣
+

∣∣∣∣f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)− f(t1,

∫ t1−T

n

0
xn−1(s)ds+ u0)

∣∣∣∣+
TT q2Gn−1

Γ(1− q1)(1− q2)
·∣∣∣∣(t2 − t1 +

T

n
)1−q2 − (

T

n
)1−q2

∣∣∣∣
= |xn−1(t2)− xn−1(t1)|+ TT q2Gn−1

Γ(1− q1)(1− q2)

∣∣∣∣t1−q21 − t1−q22 + (t2 − t1 +
T

n
)1−q2

− (
T

n
)1−q2

∣∣∣∣+

∣∣∣∣ TT q2Gn−1

Γ(1− q(t2, xn−1(t2)))
− TT q2Gn−1

Γ(1− q(t1, xn−1(t1)))

∣∣∣∣∣∣∣∣ t11−q2

1− q2
−

(Tn )1−q2

1− q2

∣∣∣∣
+

Gn−1

Γ(1− q(t1, xn−1(t1)))

∣∣∣∣ (Tn )1−q(t1,xn−1(t1))

1− q(t1, xn−1(t1))
−

(Tn )1−q(t2,xn−1(t2))

1− q(t2, xn−1(t2))
+

t1
1−q(t2,xn−1(t2))

1− q(t2, xn−1(t2))

− t1
1−q(t1,xn−1(t1))

1− q(t1, xn−1(t1))

∣∣∣∣+

∣∣∣∣f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)− f(t1,

∫ t1−T

n

0
xn−1(s)ds+ u0)

∣∣∣∣
+

TT q2Gn−1

Γ(1− q1)(1− q2)

∣∣∣∣(t2 − t1 +
T

n
)1−q2 − (

T

n
)1−q2

∣∣∣∣
≤ |xn−1(t2)− xn−1(t1)|+ TT q2Gn−1

Γ(1− q1)(1− q2)
(t2 − t1)1−q2 +

TT q2Gn−1

Γ(1− q1)(1− q2)

∣∣∣∣t1−q21

− t1−q22 + (t2 − t1)1−q2
∣∣∣∣+

∣∣∣∣ TT q2Gn−1

Γ(1− q(t2, xn−1(t2)))
− TT q2Gn−1

Γ(1− q(t1, xn−1(t1)))

∣∣∣∣∣∣∣∣ t11−q2

1− q2

−
(Tn )1−q2

1− q2

∣∣∣∣+
Gn−1

Γ(1− q(t1, xn−1(t1)))

∣∣∣∣ (Tn )1−q(t1,xn−1(t1))

1− q(t1, xn−1(t1))
−

(Tn )1−q(t2,xn−1(t2))

1− q(t2, xn−1(t2))

+
t1

1−q(t2,xn−1(t2))

1− q(t2, xn−1(t2))
− t1

1−q(t1,xn−1(t1))

1− q(t1, xn−1(t1))

∣∣∣∣+

∣∣∣∣f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0)

− f(t1,

∫ t1−T

n

0
xn−1(s)ds+ u0)

∣∣∣∣.
Based on the assumption I), II), it’s obtained that

lim
t2→t1

f(t2,

∫ t2−T

n

0
xn−1(s)ds+ u0) = f(t1,

∫ t1−T

n

0
xn−1(s)ds+ u0).

Combined with the continuity of the Gamma function Γ(t) on (0, 1], then

lim
t2→t1

|xn−1(t2)− xn−1(t1)| = 0.

Thus, the set A is equicontinuous. According to Arzela-Ascoli theorem, it’s derived
that, for ∀t ∈ [0, T ], there exists a subsequence still denoted by the sequence {xn} which
uniformly converges to a continuous function x∗. Since the sequence {xn} satisfies the
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system (9), Let n→∞ in both side of the equation (9), we have{
x∗(t) = x∗(t) +

∫ t
0

(t−s)−q(t,x(t))

Γ(1−q(t,x(t)))x
∗(s)ds− f [t,

∫ t
0 x
∗(s)ds+ u0], t ∈ (0, T ],

x∗(t) = 0, t = 0.
(12)

Since x∗(t) ∈ C[0, T ], then,
∫ t

0 x
∗(t) is smooth, if necessary, set x(t) =

∫ t
0 x
∗(t) + u0,

we have {
C
0 D

q(t,x(t))
t x(t) = f(t, x), t ∈ (0, T ],

x(0) = u0.

When T = +∞, we can proceed the similar process, and the theorem also holds.

Remark 1. For variable fractional order operator defined in the other form (see
(3),(4)in Definition 2.1,(6) and (7) in Definition 2.2), the theorem also holds.

4. The stability of the variable fractional order system

In this section, we propose a Lyapunov stability theorem which plays an important
role in stability analysis for nonlinear systems. Moreover, we develop the Mittag-Leffler
asymptotical stability theorem of the constant fractional order systems to the variable
fractional order situation.

Theorem 4.1. Assume x = 0 is an equilibrium point of the variable fractional order
system (1), and there exists a Lyapunov function V (t, x(t)) and class-K functions
αi (i = 1, 2, 3) satisfying

α1(||x||) ≤ V (t, x) ≤ α2(||x||), C
0 D

q(t,x(t))
t V (t, x(t)) ≤ −α3(||x||), (13)

where 0 < q1 ≤ q(t, x(t)) ≤ q2 < 1, t ∈ [0,∞). Then, the equilibrium point of system
(1) is asymptotically stable.

Proof. Let the time interval [0,∞) be divided into a series of subintervals
[tk, tk+1], k = 1, · · · , and limk→∞ tk = ∞. For k = 1, 2, · · · , we set Tk = tk+1 −
tk, infk Tk > 0, and 0 < supk Tk < 1, k = 1, · · · .

Firstly, we give the following inequalities

T−q(t) ≤
{

( 1
T )q2 , 0 < T < 1,

( 1
T )q1 , 1 ≤ T, (14)

with T̂ = max{( 1
T )q2 , ( 1

T )q1}.
For t ∈ (0, 1], the Gamma function Γ(t) is continuous and decreasing which is

obtained that Γ(1− q1) ≤ Γ(1− q(t)) ≤ Γ(1− q2).
Based on Definition 2.1 and 2.2, for t ∈ [tk, tk+1), k = 1, · · · , then, we calculate

C
tkD

q(t,x(t))
t V (t, x(t)) =

∫ t

tk

(t− s)−q(t,x(t))

Γ(1− q(t, x(t)))
V ′(s, x(s))ds (15)

≥ 1

Γ(1− q1)

∫ t

tk

(t− s)−q(t,x(t))V ′(s, x(s))ds

9



=
1

Γ(1− q1)

∫ t

tk

(
t− s
Tk

)−q(t,x(t))T
−q(t,x(t))
k V ′(s, x(s))ds

≥ T̂k
Γ(1− q1)

∫ t

tk

(
t− s
Tk

)−q2V ′(s, x(s))ds

=
T q2k T̂k

Γ(1− q1)

∫ t

tk

(t− s)−q2V ′(s, x(s))ds

=
1

L
C
tkD

q2
t V (t, x(t)),

where T̂k = max{( 1
Tk

)q2 , ( 1
Tk

)q1}, L = Γ(1−q1)

T
q2
k T̂kΓ(1−q2)

> 0, which implies that

C
tkD

q2
t V (t, x(t)) ≤ −L α3(α−1

2 (V (t, x(t)))), for t ∈ [tk, tk+1).

Then,

C
0 D

q2
t V (t, x(t)) ≤ −L α3(α−1

2 (V (t, x(t)))), for t ∈ [0,∞).

Based on Fractional Comparison Principle of the constant fractional order type [28],
V (t, x(t)) can be bounded by the following scalar differential equation,

V (t, x(t)) ≤ g(t), for t ∈ [0,∞),
C
0 D

q2
t g(t) = −L α3(α−1

2 (g(t))), g(0) = V (0, x(0)). (16)

Since α3α
−1
2 is a class-K function, it follows from Definition 2.3 that{

g(t) = 0, if g(0) = 0, for 0 ≤ t <∞,
g(t) ≥ 0, otherwise, for 0 ≤ t <∞.

Then, it can be obtained from (16) that C
0 D

q2
t g(t) ≤ 0, which implies

g(t) ≤ g(0), t ∈ [0,∞). (17)

In the following, we conduct the proving of the asymptotic stability for (16) by con-
tradiction.
Situation i): Suppose that a constant t1 ≥ 0 is existed to satisfy

C
0 D

q2
t1 g(t) = −L α3(α−1

2 (g(t1))) = 0,

then, for any t ≥ t1, it’s obtained that

C
0 D

q2
t g(t) = C

t1D
q2
t g(t) = −L α3(α−1

2 (g(t))).

According to Definition 2.3, x = 0 is the equilibrium point of C
0 D

q2
t g(t) =

−L α3(α−1
2 (g(t))). Then g(t) = 0 for t ≥ t1 if g(t1) = 0.

Situation ii): Suppose that a positive constant ε is existed with g(t) ≥ ε for t ≥ 0.
Thus, based on (16), it’s obtained that

ε ≤ g(t) ≤ g(0). (18)
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Then, from (16), we can obtain that

−L α3(α−1
2 (g(t))) ≤ −L α3(α−1

2 (ε))

= −L α3(α−1
2 (g(t))

g(0)
g(0) ≤ −lg(t),

where, l = L α3(α−1
2 (g(t)))
g(0) . And, for 0 ≤ t <∞, we have that

C
0 D

q2
t g(t) = −L α3(α−1

2 (g(t)) ≤ −lg(t).

Thus, it implies that g(t) ≤ g(0)Eq2(−ltq2), t ∈ [0,∞). It is a contradiction for the
assumption that g(t) ≥ ε.

Summing up the above results for Situation i) and Situation ii), we obtain that g(t)
tends to zero as t → ∞. Thus, V (t, x(t)) tends to zero as t → ∞. According to (13),
limt→∞ x(t) = 0. The proof is completed.

Besides, for the definition of the variable order fractional operator (3), (4), (6), (7),
the Theorem 4.1 also holds.

Theorem 4.2. Let x = 0 be an equilibrium point of the variable fractional order sys-
tem (1). Assume that there exists a Lyapunov function V (t, x(t)) and class-K functions
α4 satisfying

α4(||x||) ≤ V (t, x), C
0 D

q(t,x(t))
t V (t, x(t)) ≤ 0, (19)

where 0 < q1 ≤ q(t) ≤ q2 < 1, t ∈ [0,∞). Then, the equilibrium point of system (1) is
globally stable.

Proof. By the same method as in the proof of Theorem 4.1, we can get from (6) and
(19) that

C
tkD

q2
t V (t, x(t)) ≤ 0,

then,

C
0 D

q2
t V (t, x(t)) ≤ 0, t ∈ [0,∞). (20)

Based on Fractional Comparison Principle, it’s obtained that

V (t, x(t)) ≤ V (0, x(0)). (21)

According to (19), it implies

||x(t)|| ≤ α−1
4 (V (0, x(0))), (22)

for t ∈ [0,∞). Thus, the equilibrium is stable.

Remark 2. The above two stability theorems provide an important tool to guarantee
the stability of the controlled system with variable fractional order operator, we will
pursue this line in the further.
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