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Abstract The aim of this paper is to study the decomposition of pseudo—
radioactive products that follow a dynamics determined by a trigonometric
factor. In particular for maps of the form e®5(™) is proved that an asymp-
totic sampling recomposition property, generalizing the classical Shannon-
Whittaker-Kotel’nikov Theorem, works.
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1 Introduction and statement of the main result

In [4], we studied the decomposition of pseudo-radioactive products that
follow a Gaussian dynamics in terms of a generalization of the well-known
Shannon-Whittaker-Kotel'nikov Theorem (see, for instance, [7] and [8]) for a
non-banded limited maps on L?(R), i.e. for Paley-Wiener signals.

One of the main characteristics of this kind of products is that their de-
composition dynamics is unknown except for a little amount of laboratory
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temporal samples. Some experimental results have shown that, locally, their
behaviors have a Gaussian adjustment, that is, their decomposition function
is f(t) = e A > 0. In [4] we saw that this type of functions satisfies an
asymptotic sampling recomposition property called P.

This paper follows the spirit of [4] and extends its results to pseudo—
radioactive materials whose dynamics is not, strictly speaking, a Gaussian
function. More precisely, we shall prove that the function f(¢) = eos(m) holds
the property P for every t. Note that the fact that property P works for
trigonometrical maps implies that is possible to use the recomposition prop-
erty for chemical reactions models with oscillators, i.e., ordinary differential
equations of order two.

2 On the property P

We shall remember that a central result of the Signal Theory is the Shannon-
Whittaker-Kotel'nikov’s Theorem (see [7] or [8]), based on the normalized
cardinal sinus map defined by:

sin(7t) if ¢ # 0
1 = Tt ’
sine(t) { 1 if t = 0.

Later, Middleton incorporated a new theorem dealing with band step func-
tions (see [6]), and opened the door to important generalizations. Marvasti and
Jain (see [5]) proved that the bandwidth of a signal can be compressed by a
ratio of % if and only if the signal has nth_order zero crossings or zeros (if
complex), and Agud and Catalan (see [1]) stated a new generalization where
they prove that we can apply the SWK theorem to a particular kind of signals
using less samples per unit of time . All of these generalizations and expansions
tried to obtain approximations of non band-limited signals using band-limited
ones by increasing their band size. In [4] we studied a different approach, be-
cause we kept constant the sampling frequency and generalized in the limit
the results of Marvasti et al. and Agud et al. (see [4] and references inside).

Antuna et al. (see [2] and [3]) stated and proved, respectively, the following
property P and theorem.

Property P. Let f: R — R be a map and 7 € RT. We say that f holds the
property P for 7 if

£t = Tim. (Z 7 (&) snetre - k))n 1)

k€EZ

Theorem 1 The Gaussian maps, i.e. maps of the form e_’\tz, hold property
P for every given T € RT.

Now we shall prove an analogous result for the function f(t) = e®°s(™%),
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3 Auxiliary results

Lemma 1 The equality
I 22
t == —_— 2
7 cot(mz) Z+n§::122_nz (2)

holds for all z € 7.

In order to prove this lemma, we need, previously, the following one:

Lemma 2 (The additive Herglotz Lemma) Let f be an entire function

such that

f(z):;f<;)+;f<'z;1), Vs e C. 3)

Then f is constant.

Proof Assume that f is an entire function and satisfies (3), and let D, be the
disk
D, ={zeC:|z| <r},

with 7 > 1. It is clear that if z € D, then %, Z;rl € D,.

Let M = m%x{|f’(z)|}. If we differentiate the expression (3), we obtain:
zeD,

1 z 1 z+1
!/ _ (= — !
P =1 (2) 4 s ( ! ) Ve D,
S0,
1
wr@l=|r (5)+r (55)| <2

Hence, |f'(2)| < 2, for all z, in contradiction with the hypothesis, unless

M = 0. In this case, f/(z) =0 in D, and so f is constant. O

We can now prove Lemma 1.

Proof (Lemma 1) Let us consider the function

G- jim Y Y
z) = lim == —_—.
9 n%mkiinz—i—k‘ z n:122—n2

It is clear that 7cot(wz) y ¢g(z) are meromorphic functions, Z—periodic,
with simple poles at z =n, n € Z.
It is immediate that cot(wz) satisfies (3), since

1 1
cot(mz) = = cot T2 4~ cot mz+l)
2 2 2 2
n
Similarly, as > ﬁ satisfies as well (3), up to a remainder term that for
k=—n

n — oo tends to 0, we can state that the function f(z) = g(z) — 7 cot(mz) is an



4 M. Teresa de Bustos et al.

entire function that satisfies Lemma 2. Hence, f(z) is constant. But f (%) =0,
since 7 cot(mz) vanishes at z = 4 and the sum g () is a real telescopic series

1 — 4
S) =2 S
g(2> +;174n2 ’
we have that f(z) = 0. O

From the equation (2), a couple of related identities can be obtained:

Lemma 3 The equalities

mtan 5t = Z Gno17 =27 z,zz )
(_1)n+1 o 71
XE:N n2—22 ~ z + 2z si:lr(‘n'z)
n

hold for all z € C.

Proof Having in mind that wtan 22 = 7 cot &£ — 27 cot(7wz), we have
g 2 2

o0 o0
WCOt?Z — 27 cot(mz) g g —n2

Splitting the last series into even and odd terms, we have:

o0 o0 o0 o0
e
— 22 —4n? ~ 22 — (2n +1)2 — 22 —4n? oy (2r —1)2 —

Regarding the second identity, note that it is equivalent to prove that

neN
But as i =7 cot(mz) 4 mtan %7, using the formulae above, we obtain:
™ t( ) + ot Tz
= meot(mz) + mtan — =
sin(7z) 2
N (2n +1)2—22
N — = 22— (2n+1)2 = 22— (2n+1)2
_ > 1)"2z
B Z —n2
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Fig. 1 f(t) = ecos(mt)

4 Main result
Theorem 2 The function f(z) = e“*(") satisfies the property P.

Proof 1f we define A\, = e(*l)k, k € Z, it follows from the expansion (2) of the
cotangent that

Zlog()\k) sinc(t — k) = log(Ao) sinc(t) + 2t sin(rt) Z (=1)*log(Ar) =

™ 2 — k2
keZ keN
) 2t sin(wt) (7 cot(nmt) 1
= t —_— =
sine(t) + — ( ot 212
= sinc(t)(1 4+ wtcot(nt) — 1) =
= cos(mt)
hence,

£(6) = H /\iinc(t—k) _ ecos(ms)7
keZ

whose graphical representation is shown in Fig.1.
It is clear that f is analytic. Now we show that f satisfies P. Let us now

see that
. 1. B _ sinc(t—k)
nh_}rrgo (E A sinc(t k)) = I | A (5)

keZ keZ

It is clear that if ¢ € Z, (5) holds. So, we may assume that ¢t ¢ Z. Using
the formulae of Lemma 3, we can define the functions:

1 us Tt 1 s
®) % Ck—12—¢ 4" ( 2 ) 22 T sin(rt)

Bt)y=>" m - %tan (7;>

keN
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Computing, and using again the notation
h(t,n) = Z )\5 sinc(t — k) (7)
kez

we have

h(t,n) = Ao sinc(t) + 2 Sii(m) Z (—1)FA; _

t2 _ k2
keN
2t si t
_ o sine(t) + 25T (—e%A(t) + e*%B(t))
T

So, taking limit when n tends to infinity in expression above, it is

lim h(t,n) = nl;ngoz Af sine(t — k) =

n— 00
keZ

~ gine(t) + 2 sin(t) ( ™ 1 ) _

T 2sin(wt) 262

On the other hand, developing the exponential in a power series and using
the identity above

sine(t) — Mm) + @B(w _1—o,

we have

n(h(t,n) — 1) = net (sinc(t) - WA@)) et 2T oy
= new (sinc(t) - wfl(t) + 21tSi?r(mf)B(t)) +

2t sin(7rt) _1 1 o
nfB(t) (e n— en) —n=

2t si t
=n (eTIL - 1) +HMB(15) (677% - e%) =
T

(b o (1) 2 (20 (1)

4t si 1 1
:1_t81n<7rt)3(t)++0<)
T 2n n

so, by (6), we have:

i n(h(tn) 1) =1- @B(t) -

t t
—1— tan <7;> sin(mt) = 1 — 2sin? (7;) -

= cos(mt)
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concluding that

lim enlgmoo n(h(t,;n)—1 — pcos(mt) _ H Azmc(tfk)
n—oo
kEZ
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