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Abstract The aim of this paper is to study the decomposition of pseudo–
radioactive products that follow a dynamics determined by a trigonometric
factor. In particular for maps of the form ecos(πt) is proved that an asymp-
totic sampling recomposition property, generalizing the classical Shannon-
Whittaker-Kotel’nikov Theorem, works.

Keywords Pseudo-radioactive · band-limited signal · Shannon’s sampling
theorem · Approximation theory.

1 Introduction and statement of the main result

In [4], we studied the decomposition of pseudo–radioactive products that
follow a Gaussian dynamics in terms of a generalization of the well-known
Shannon-Whittaker-Kotel’nikov Theorem (see, for instance, [7] and [8]) for a
non-banded limited maps on L2(R), i.e. for Paley-Wiener signals.

One of the main characteristics of this kind of products is that their de-
composition dynamics is unknown except for a little amount of laboratory
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temporal samples. Some experimental results have shown that, locally, their
behaviors have a Gaussian adjustment, that is, their decomposition function
is f(t) = e−λt

2

, λ > 0. In [4] we saw that this type of functions satisfies an
asymptotic sampling recomposition property called P.

This paper follows the spirit of [4] and extends its results to pseudo–
radioactive materials whose dynamics is not, strictly speaking, a Gaussian
function. More precisely, we shall prove that the function f(t) = ecos(πt) holds
the property P for every t. Note that the fact that property P works for
trigonometrical maps implies that is possible to use the recomposition prop-
erty for chemical reactions models with oscillators, i.e., ordinary differential
equations of order two.

2 On the property P

We shall remember that a central result of the Signal Theory is the Shannon-
Whittaker-Kotel′nikov′s Theorem (see [7] or [8]), based on the normalized
cardinal sinus map defined by:

sinc(t) =

{
sin(πt)
πt if t 6= 0,

1 if t = 0.

Later, Middleton incorporated a new theorem dealing with band step func-
tions (see [6]), and opened the door to important generalizations. Marvasti and
Jain (see [5]) proved that the bandwidth of a signal can be compressed by a

ratio of 1
n if and only if the signal has nth-order zero crossings or zeros (if

complex), and Agud and Catalán (see [1]) stated a new generalization where
they prove that we can apply the SWK theorem to a particular kind of signals
using less samples per unit of time . All of these generalizations and expansions
tried to obtain approximations of non band-limited signals using band-limited
ones by increasing their band size. In [4] we studied a different approach, be-
cause we kept constant the sampling frequency and generalized in the limit
the results of Marvasti et al. and Agud et al. (see [4] and references inside).

Antuña et al. (see [2] and [3]) stated and proved, respectively, the following
property P and theorem.
Property P. Let f : R → R be a map and τ ∈ R+. We say that f holds the
property P for τ if

f(t) = lim
n→∞

(∑
k∈Z

f
1
n

(
k

τ

)
sinc(τt− k)

)n
(1)

Theorem 1 The Gaussian maps, i.e. maps of the form e−λt
2

, hold property
P for every given τ ∈ R+.

Now we shall prove an analogous result for the function f(t) = ecos(πt).
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3 Auxiliary results

Lemma 1 The equality

π cot(πz) =
1

z
+

∞∑
n=1

2z

z2 − n2
(2)

holds for all z ∈ Z.

In order to prove this lemma, we need, previously, the following one:

Lemma 2 (The additive Herglotz Lemma) Let f be an entire function
such that

f(z) =
1

2
f
(z

2

)
+

1

2
f

(
z + 1

2

)
, ∀z ∈ C. (3)

Then f is constant.

Proof Assume that f is an entire function and satisfies (3), and let Dr be the
disk

Dr = {z ∈ C : |z| ≤ r},
with r > 1. It is clear that if z ∈ Dr then z

2 ,
z+1
2 ∈ Dr.

Let M = max
z∈Dr

{|f ′(z)|}. If we differentiate the expression (3), we obtain:

f ′(z) =
1

4
f ′
(z

2

)
+

1

4
f ′
(
z + 1

2

)
∀z ∈ Dr

so,

4|f ′(z)| =
∣∣∣∣f ′ (z2)+ f ′

(
z + 1

2

)∣∣∣∣ ≤ 2M

Hence, |f ′(z)| ≤ M
2 , for all z, in contradiction with the hypothesis, unless

M = 0. In this case, f ′(z) = 0 in Dr, and so f is constant. ut

We can now prove Lemma 1.

Proof (Lemma 1) Let us consider the function

g(z) = lim
n→∞

n∑
k=−n

1

z + k
=

1

z
+

∞∑
n=1

2z

z2 − n2
.

It is clear that π cot(πz) y g(z) are meromorphic functions, Z−periodic,
with simple poles at z = n, n ∈ Z.

It is immediate that cot(πz) satisfies (3), since

cot(πz) =
1

2
cot

πz

2
+

1

2
cot

π(z + 1)

2

Similarly, as
n∑

k=−n

1
z+k satisfies as well (3), up to a remainder term that for

n→∞ tends to 0, we can state that the function f(z) = g(z)−π cot(πz) is an
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entire function that satisfies Lemma 2. Hence, f(z) is constant. But f
(
1
2

)
= 0,

since π cot(πz) vanishes at z = 1
2 and the sum g

(
1
2

)
is a real telescopic series

g

(
1

2

)
= 2 +

∞∑
n=1

4

1− 4n2
= 0,

we have that f(z) = 0. ut

From the equation (2), a couple of related identities can be obtained:

Lemma 3 The equalities

π tan πz
2 =

∞∑
n=1

4z
(2n−1)2−z2∑

n∈N

(−1)n+1

n2−z2 = −1
z + π

2z sin(πz)

(4)

hold for all z ∈ C.

Proof Having in mind that π tan πz
2 = π cot πz2 − 2π cot(πz), we have

π cot
πz

2
− 2π cot(πz) =

∞∑
n=1

z(
z
2

)2 − n2 −
∞∑
n=1

4z

z2 − n2

Splitting the last series into even and odd terms, we have:

∞∑
n=1

4z

z2 − 4n2
−
∞∑
n=0

4z

z2 − (2n+ 1)2
−
∞∑
n=1

4z

z2 − 4n2
=

∞∑
n=0

4z

(2n − 1)2 − z2

Regarding the second identity, note that it is equivalent to prove that

π

sin(πz)
=

1

z
+
∑
n∈N

(−1)n2z

z2 − n2

But as π
sin(πz) = π cot(πz) +π tan πz

2 , using the formulae above, we obtain:

π

sin(πz)
= π cot(πz) + π tan

πz

2
=

=
1

z
+

∞∑
n=1

2z

z2 − n2
+

∞∑
n=0

4z

(2n+ 1)2 − z2
=

=
1

z
+

∞∑
n=1

2z

z2 − (2n)2
+

∞∑
n=0

2z

z2 − (2n+ 1)2
−
∞∑
n=0

4z

z2 − (2n+ 1)2
=

=
1

z
+

∞∑
n=1

(−1)n2z

z2 − n2

ut
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Fig. 1 f(t) = ecos(πt)

4 Main result

Theorem 2 The function f(z) = ecos(πt) satisfies the property P.

Proof If we define λk = e(−1)
k

, k ∈ Z, it follows from the expansion (2) of the
cotangent that

∑
k∈Z

log(λk) sinc(t− k) = log(λ0) sinc(t) +
2t sin(πt)

π

∑
k∈N

(−1)k log(λk)

t2 − k2
=

= sinc(t) +
2t sin(πt)

π

(
π cot(πt)

2t
− 1

2t2

)
=

= sinc(t)(1 + πt cot(πt)− 1) =

= cos(πt)

hence,

f(t) =
∏
k∈Z

λ
sinc(t−k)
k = ecos(πt),

whose graphical representation is shown in Fig.1.
It is clear that f is analytic. Now we show that f satisfies P. Let us now

see that

lim
n→∞

(∑
k∈Z

λ
1
n

k sinc(t− k)

)n
=
∏
k∈Z

λ
sinc(t−k)
k (5)

It is clear that if t ∈ Z, (5) holds. So, we may assume that t /∈ Z. Using
the formulae of Lemma 3, we can define the functions:

A(t) =
∑
k∈N

1

(2k − 1)2 − t2
=

π

4t
tan

(
πt

2

)
+

1

2t2
− π

2t sin(πt)

B(t) =
∑
k∈N

1

(2k − 1)2 − t2
=

π

4t
tan

(
πt

2

) (6)
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Computing, and using again the notation

h(t, n) =
∑
k∈Z

λ
1
n

k sinc(t− k) (7)

we have

h(t, n) = λ0 sinc(t) +
2t sin(πt)

π

∑
k∈N

(−1)kλ
1
n

k

t2 − k2
=

= e
1
n sinc(t) +

2t sin(πt)

π

(
−e 1

nA(t) + e−
1
nB(t)

)
So, taking limit when n tends to infinity in expression above, it is

lim
n→∞

h(t, n) = lim
n→∞

∑
k∈Z

λ
1
n

k sinc(t− k) =

= sinc(t) +
2t sin(πt)

π

(
π

2t sin(πt)
− 1

2t2

)
= 1

On the other hand, developing the exponential in a power series and using
the identity above

sinc(t)− 2t sin(πt)

π
A(t) +

2t sin(πt)

π
B(t)− 1 = 0,

we have

n(h(t, n)− 1) = ne
1
n

(
sinc(t)− 2t sin(πt)

π
A(t)

)
+ ne−

1
n

2t sin(πt)

π
B(t)− n =

= ne−
1
n

(
sinc(t)− 2t sin(πt)

π
A(t) +

2t sin(πt)

π
B(t)

)
+

+ n
2t sin(πt)

π
B(t)

(
e−

1
n − e 1

n

)
− n =

= n
(
e

1
n − 1

)
+ n

2t sin(πt)

π
B(t)

(
e−

1
n − e 1

n

)
=

= n

(
1

n
+

1

2n2
+ o

(
1

n2

))
+ n

2t sin(πt)

π
B(t)

(
−2

n2
+ o

(
1

n2

))
=

= 1− 4t sin(πt)

π
B(t) +

1

2n
+ o

(
1

n

)
so, by (6), we have:

lim
n→∞

n(h(t, n)− 1) = 1− 4t sin(πt)

π
B(t) =

= 1− tan

(
πt

2

)
sin(πt) = 1− 2 sin2

(
πt

2

)
=

= cos(πt)
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concluding that

lim
n→∞

e
lim

n→∞
n(h(t,n)−1

= ecos(πt) =
∏
k∈Z

λ
sinc(t−k)
k

ut

References

1. L. Agud and R.G. Catalán, New Shannon’s sampling recomposition. Rev. Acad. Ciencias,
Zaragoza 56, 45-48 (2011).
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