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Abstract. Moran’s Theorem is one of the milestones in Frac-
tal Geometry. It allows the calculation of the similarity di-
mension of any (strict) self-similar set lying under the open
set condition. Throughout a new fractal dimension we pro-
vide in the context of fractal structures, we generalize such a
classical result for attractors which are required to satisfy no
separation properties.
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1. Introduction

In this paper, we revisit a classical problem in Frac-
tal Geometry from the viewpoint of fractal structures:
how to calculate the similarity dimension of the attrac-
tor of an iterated function system. A solution for such a
problem requires the open set condition to be satisfied
by the corresponding iterated function system. Such a
condition tries to control the overlapping among the
self-similar copies of the whole attractor.

We have to trace back to the forties to find out the
key result that allows the effective calculation of the
similarity dimension of (strict) self-similar sets from
their similarity ratios. It was proved by Australian
mathematician P.A.P. Moran, a Besicovitch pupil at
Cambridge (c.f. [12, Theorem II]).

A new viewpoint regarding fractals arises from
Asymmetric Topology. In fact, a fractal structure is a

kind of uniformity which provides better approaches
of a space as deeper levels in its structure are explored.

In this article, we prove a generalized Moran’s The-
orem for attractors which, unlike Moran’s Theorem,
are not required to be under the open set condition.

The structure of this paper is as follows. In Sec-
tion 2, we provide all the mathematical background
to make this article self-contained. This includes the
basics on IFS-attractors, the open set condition, frac-
tal structures, and a brief description regarding both
the Hausdorff and box dimensions. Section 3 explains
how classical box dimension can be generalized by
fractal dimension III in the context of fractal struc-
tures. Section 4 contains a generalized Moran’s Theo-
rem (c.f. Theorem 4.1), and finally, Section 5 summa-
rizes the main conclusions (c.f. Theorem 5.1).

2. Preliminaries

2.1. IFS-attractors

Let k � 2. By an iterated function system (IFS),
we shall understand a finite collection of similitudes
on Rd, F = {f1, . . . , fk}, where each self-map fi sat-
isfies the identity

d(fi(x), fi(y)) = ci · d(x, y), for all x, y 2 Rd
,

ci 2 (0, 1) is the similarity ratio of fi, and d refers
to the Euclidean distance. Then there exists a unique
compact (nonempty) subset K ⇢ Rd satisfying the
next Hutchinson’s equation (c.f. [10]):

K = [k
i=1fi(K). (1)

K is called the attractor (also the self-similar set gener-
ated by F) and consists of (smaller) self-similar copies
Ki of the whole attractor K, also known as pre-fractals
of K (c.f. [6]). In fact, Ki = fi(K), for all i = 1, . . . , k.
We also denote Kij = fi(fj(K)), and so on. In gen-
eral, we will follow the notation used in Bandt’s paper,
c.f. [3]: let n 2 N and ⌃ = {1, . . . , k} be a finite alpha-
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bet. Moreover, let ⌃n = {i = i1 · · · in : ij 2 ⌃, j =
1, . . . , n} be the collection of all n�length words from
⌃. Further, we also write fi = fi1 � · · · � fin , ci =
ci1 · · · cin , and Ki = fi(K). Accordingly, Eq. (1) can
be rewritten as K = [{Ki : i 2 ⌃n}. Letting n ! 1,
the so-called address map ⇡ : S1 �! K stands as
a continuous map from ⌃1, the set consisting of all
infinite length words (sequences), onto the attractor K.

2.2. The open set condition

The open set condition (OSC) was first provided
by P.A.P. Moran in [12] to prove that the Hausdorff
measure of any attractor is positive. Interestingly,
Schief proved in [14] its reciprocal: a positive Haus-
dorff measure implies the OSC. We say that an IFS
F = {f1, . . . , fk} is under the OSC if there exists a
nonempty open subset V ✓ Rd (sometimes called a
feasible open set, c.f. [3]) such that the fi(V) (i =
1, . . . , k) are pairwise disjoint with all of them con-
tained in V , i.e., [k

i=1fi(V) ✓ V : fi(V) \ fj(V) = ;,
for all i 6= j.

On the other hand, observe that the feasible open set
V and the attractor K may be disjoint. In these situ-
ations, the OSC may be too weak to prove theoreti-
cal results regarding the fractal dimension of K. In this
way, Lalley strengthened the definition of the OSC in
the following sense [11]: the strong open set condition
(SOSC) is fulfilled if it is also satisfied that K\V 6= ;.
It is worth pointing out that Schief also proved that the
OSC and the SOSC are equivalent on Euclidean sub-
sets (c.f. [14, Theorem 2.2]).

2.3. Fractal structures

The concept of a fractal structure was first intro-
duced by Bandt and Retta in [4], and formalized after-
wards by Arenas and Sánchez-Granero in [1] to char-
acterize non-Archimedeanly quasi-metrizable spaces.
They play a relevant role in asymmetric topology and
constitute an ideal context where new models of frac-
tal dimension can be provided (c.f. [7]). A family �
of subsets of X is said to be a covering (of X) if
X = [{A : A 2 �}. Let �1 and �2 be two coverings
of X . By �1 � �2, we understand that �1 is a refine-
ment of �2, i.e., for all A 2 �1, there exists B 2 �2

such that A ✓ B. In addition, �1 �� �2 means that
�1 � �2, and also that for all B 2 �2, B = [{A 2
�1 : A ✓ B}. Thus, a fractal structure on X is a count-
able family of coverings � = {�n : n 2 N} such that

�n+1 �� �n, for all n 2 N. Covering �n is called
level n of �.

To simplify, we shall allow that a set can appear
twice or more in a level of a fractal structure. A fractal
structure is finite if all its levels are finite coverings.

It is worth pointing out that there exists a natural
fractal structure for each attractor. Its description can
be stated as follows.

Definition 2.1 (c.f. [2], Definition 4.4). Let F be an
IFS whose attractor is K. The natural fractal structure
on K as a self-similar set is the countable family of
coverings � = {�n : n 2 N}, where �n = {fi(K) :
i 2 ⌃n}.

Equivalently, the levels of the natural fractal struc-
ture on K as a self-similar set can be described as
�1 = {fi(K) : i 2 ⌃}, and �n+1 = {fi(A) : A 2
�n, i 2 ⌃}.

On the other hand, it holds that any Euclidean space
Rd can be always endowed with a natural fractal struc-
ture whose levels are given by (c.f. [9, Definition 3.1]):

�n =
�⇥

k1

2n ,
k1+1
2n

⇤⇥ · · ·⇥ ⇥
kd
2n ,

kd+1
2n

⇤
: ki 2 Z

 
,

where i = 1, . . . , d. Note that such a fractal structure
is a tiling consisting of 2�n�cubes on Rd.

2.4. The Hausdorff and box dimensions

Let (X, ⇢) be a metric space. Along the sequel,
diam (A) will denote the diameter of any subset A of
X , i.e., diam (A) = sup{⇢(x, y) : x, y 2 A}. More-
over, let F ✓ X and � > 0. By a ��cover of F , we
shall understand a countable family of subsets {Ui :
i 2 I} such that F ✓ [i2IUi with diam (Ui)  �. In
addition, let C�(F ) be the collection of all ��covers of
F and define

Hs
�(F ) = inf

(
X

i2I

diam (Ui)
s : {Ui}i2I 2 C�(F )

)
.

Hence, H↵
H(F ) = lim�!0 Hs

�(F ) always exists and is
called the (s�dimensional) Hausdorff measure of F .
It allows to define the Hausdorff dimension of F as the
(unique) critical point s � 0 where Hs

H(F ) “jumps”
from 1 to zero, i.e., dimH(F ) = sup{s : Hs

H(F ) =
1} = inf{s : Hs

H(F ) = 0}. In particular,

HdimH(F )
H (F ) 2 {0, d,1 : d 2 (0,1)}.
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Though the Hausdorff dimension is the most ac-
curate model of fractal dimension since its definition
is based on a measure, the box dimension is more
appropriate to be applied in empirical contexts. The
(lower/upper) box dimension of F ✓ Rd is defined by
the following (lower/upper) limit:

dimB(F ) = lim
�!0

logN�(F )

� log �
,

where N�(F ) is the number of ��cubes that intersect
F . A ��cube in Rd is a set of the form {[k1�, (k1 +
1)�]⇥ · · ·⇥ [kd�, (kd+1)�] : k1, . . . , kd 2 Z}. In par-
ticular, we can choose � = 2�n. It is worth mentioning
that N�(F ) can be calculated by one of the expressions
displayed in [6, Equivalent definitions 3.1]. In partic-
ular, N�(F ) can be chosen as the smallest number of
sets of diameter  � that cover F .

3. Generalizing box dimension by fractal

dimension III

In this section, we explain how to generalize the
classical box dimension on Euclidean subsets from the
viewpoint of fractal structures. To deal with, we shall
define a fractal dimension model for fractal structures
and prove that if the natural fractal structure for Eu-
clidean subsets is fixed, then both dimensions coin-
cide.

Let � be a fractal structure. We define An(F ) =
{A 2 �n : A \ F 6= ;} as the collection of all the
elements in level n of � that intersect a given subset
F of X , diam (�n) = sup{diam (A) : A 2 �n}, and
diam (F,�n) = sup{diam (A) : A 2 An(F )}.

Definition 3.1 (c.f. [8], Definition 4.2). Let � be a
fractal structure on a metric space (X, ⇢), F be a sub-
set of X , assume that diam (F,�n) ! 0, and define
Hs

n,3(F ) by

inf

(
X

i2I

diam (Ai)
s : {Ai}i2I 2 An,3(F )

)
,

where An,3(F ) = {{A : A 2 Al(F )} : l � n}. More-
over, let Hs

3(F ) = lim
n!1

Hs
n,3(F ). The fractal dimen-

sion III of F is given as the (unique) non-negative real
number such that

dim 3
�(F ) = sup{s � 0 : Hs

3(F ) = 1}
= inf{s � 0 : Hs

3(F ) = 0}.

It is worth pointing out that fractal dimension III al-
ways exists, since the sequence {Hs

n,3(F ) : n 2 N}
is monotonic in n 2 N. We assume that inf ; = 1
in Definition 3.1. For instance, if there exists F ⇢ X

such that An,3(F ) = ;, then we have dim 3
�(F ) = 1.

Observe that the condition diam (F,�n) ! 0,
though necessary in previous Definition 3.1, is not too
restrictive.

Remark 3.2. Let K be any attractor endowed with
its natural fractal structure as a self-similar set. Then
diam (K,�n) ! 0 since {diam (�n) : n 2 N} de-
creases geometrically.

The following result gives a handier expression to deal
with the effective calculation of fractal dimension III.

Theorem 3.3 (c.f. [8], Theorem 4.7). Let � be a frac-
tal structure on a metric space (X, ⇢), F be a subset of
X , and assume that Hs(F ) = limn!1 Hs

n(F ) exists,
where Hs

n(F ) =
P {diam (A)s : A 2 An(F )}. Then

dim 3
�(F ) = sup{s � 0 : Hs(F ) = 1}

= inf{s � 0 : Hs(F ) = 0}.

Next, we show that fractal dimension III general-
izes box dimension. To deal with, we will prove even a
more general result, aimed by the next Euclidean prop-
erty: for each � > 0 and all Euclidean subset F with
diam (F )  �, there are at most 3d ��cubes in Rd that
are intersected by F . This fact motivates the following
definition.

Definition 3.4. Let � be a fractal structure on a
metrizable space X and F be a subset of X . We say
that � is under the �condition if there exists a natu-
ral number  such that for all n 2 N, every subset A of
X with diam (A)  diam (F,�n) intersects at most
to  elements in level n of �.

Hence, the following result can be stated.

Theorem 3.5 (c.f. [8], Theorem 4.17). Let � be a
fractal structure under the �condition on a met-
ric space (X, ⇢) and F be a subset of X . Moreover,
assume that there exists dimB(F ). If for all A 2
An(F ) it holds that diam (A) = diam (F,�n) with
diam (F,�n) ! 0, then the fractal dimension III of
F equals the box dimension of F , i.e., dimB(F ) =
dim 3

�(F ).

The next corollary follows immediately from Theo-
rem 3.5.
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Corollary 3.6 (c.f. [8], Theorem 4.15). Let F ⇢ Rd

endowed with its natural fractal structure as a Eu-
clidean subset. Assume that there exists dimB(F ).
Then dimB(F ) = dim 3

�(F ).

To justify that, just notice that the natural frac-
tal structure on any Euclidean subset consists of
2�n�diameter elements in level n of �.

4. A Moran’s Theorem for fractal dimension III

Moran’s Theorem is a milestone in Fractal Geom-
etry. It was first contributed by P.A.P. Moran (1946),
who required the pre-fractals Ki of an attractor K not
to overlap among them (which is equivalent to require
F to satisfy the OSC), to prove that the Hausdorff di-
mension of K follows as the (unique) solution of an
equation only involving the similarity ratios ci associ-
ated with each fi 2 F . However, it is worth pointing
out that such a result still remains quite powerful, since
without a wide amount of effort, the Hausdorff dimen-
sion of a wide class of self-similar sets can be easily
calculated. Next, we recall that classical result.

Moran’s Theorem (1946). Let F be an IFS whose
attractor is K. Let ci be the similarity ratio associ-
ated with each similarity fi 2 F , and assume that F
is under the OSC. If ↵ is the solution of the equationP

i2I c
s
i = 1, then dimB(K) = dimH(K) = ↵, and

0 < H↵
H(K) < 1.

The unique (positive) solution of
P

i2I c
s
i = 1 is

called the similarity dimension of K. Along the sequel,
the similarity dimension of an IFS-attractor will be de-
noted by ↵. Thus, we always have H↵

H(K) 2 (0,1). A
proof for Moran’s Theorem can be found in Falconer’s
book (c.f. [6, Subsection 9.2]), though the reader may
check that the proof regarding a lower bound of the
Hausdorff dimension becomes quite awkward. More-
over, whether the OSC is not fulfilled by F , then the
calculation of the Hausdorff dimension of K becomes
harder and only some partial results are known (c.f.,
e.g., [5,13]). However, even in that case, it holds that
both the box and the Hausdorff dimensions of K can
be approximated by fractal dimension III, which still
equals the similarity dimension. Next, we provide the
main theoretical result in this section, which provides a
generalized version of the classical Moran’s Theorem
in terms of fractal dimension III.

Theorem 4.1 (c.f. [8], Theorem 4.20 and Corollary
4.22). Let F be an IFS whose associated attractor is
K. Assume that ci is the similarity ratio associated
with each similarity fi 2 F and let � be the natural
fractal structure on K as a self-similar set. If ↵ is the
similarity dimension of K, then

(i) dim 3
�(K) = ↵ and 0 < H↵

3 (K) < 1.
(ii) In addition, if F is under the OSC, then

dimB(K) = dim 3
�(K) = dimH(K) = ↵. Also,

H↵
H(K),H↵

3 (K) 2 (0,1).

Proof. Firstly, it is clear that the attractor K is the
unique non-empty compact subset of Rd satisfying the
following Hutchinson’s equation:

K = [{K
i

: i 2 ⌃n}.

Hence,

(i) Notice that An,3(K) = {�m : m � n}. Further,
let ↵ � 0 be such that

P
i2I c

↵
i = 1. In addition,

observe that c
i

is the similarity ratio associated
with f

i

. Thus, diam (K
i

) = c

i

· diam (K) for all
i 2 ⌃l. It is also worth pointing out that

X
{c↵

i

: i 2 ⌃l} =
X

i12⌃

c

↵
i1 · · ·

X

il2⌃

c

↵
il

=
X

i2⌃l

c

↵
i

= 1,

for all i = i1 · · · il 2 ⌃l. Accordingly, for
all n 2 N, the following calculations hold:
H↵

n,3(K) = inf{P diam (A)↵ : A 2 �m,m �
n} = inf {P diam (K

i

)↵ : i 2 ⌃m
,m � n} =

inf {P c

↵
i

· diam (K)↵ : i 2 ⌃m
,m � n} . Thus,

dim 3
�(K) = ↵, since H↵

3 (K) = diam (K)↵ /2
{0,1}.

(ii) In addition, if F is under the OSC, then Moran’s
Theorem and Theorem 4.1 (i) lead to ↵ =
dim 3

�(K), i.e., the fractal dimension III of K
equals its similarity dimension. Moreover, that
value of ↵ also equals both the box and the
Hausdorff dimensions of K. In fact, the next
chain of inequalities is satisfied: dimH(K) 
dim 3

�(K) = dimH(K) = dimB(K) = ↵.
To conclude the proof, just observe that H↵

H(K) 
H↵

3 (K), where H↵
3 (K) < 1 by Theorem 4.1 (i)

and H↵
H(K) > 0 (due to Moran’s Theorem). Ac-

cordingly, Theorem 4.1 (ii) follows.
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Thus, Theorem Theorem 4.1 (i) becomes useful to
calculate the fractal dimension of IFS-attractors. Inter-
estingly, it does not require the corresponding IFS to
be under the OSC for fractal dimension III calculation
purposes.

5. Conclusion

Next, we summarize all the results contained in this
paper.

Theorem 5.1. Let F be an IFS and K its attractor.
Moreover, let � be the natural fractal structure on K
as a self-similar set and ci be the similarity ratio asso-
ciated with each similarity fi 2 F . Consider the fol-
lowing statements:

(i) SOSC.
(ii) OSC.

(iii) 0 < H↵(K) < 1.
(iv) dimB(K) = dim 3

�(K) = dimH(K) = ↵, where
↵ is the similarity dimension of K.

The next chain of implications and equivalences stands:

(i) , (ii) , (iii) ) (iv).

It is worth pointing out that the implication (iv) )
(iii) is not true, in general, due to a counterexample
provided by Mattila (c.f. [14]).
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