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Abstract. The objective of the present paper is to study in an
analytical way the existence and the stability of the libration points,
in the restricted three-body problem, when the primaries are triaxial
rigid bodies in the case of the Euler angles of the rotational motion
are equal to θi = π/2, ψi = 0, ϕi = π/2, i = 1, 2. We prove that the
locations and the stability of the triangular points change according
to the effect of the triaxiality of the primaries. Moreover, the solution
of long and short periodic orbits for stable motion is presented.

1. Introduction

In the framework of three–body problem there are three objects mov-
ing under their mutual gravitational interactions in the space subdued
by the Newton’s universal law of gravitation. Generally, there are no
restrictions neither on the motion of these objects nor their masses. The
choreography takes place in three dimensions and a potential resolution
of this problem demands that the past and the future motions of the ob-
jects be uniquely determined based uniquely on their present locations
and velocities.

In the past, many scientists and mathematicians have done vigorous
attempts to construct closed form solution to the three–body problem.
Unfortunately all these attempts failed. In general there is no closed form
solution for the three–body problem similar to the well known model of
the two–body one. The reason is because the motion of the three objects
is not predictable, thereby this problem is considered one of the most
challenging problems in the history of science. The three–body problem
in space dynamics is used to find the trajectories of celestial objects in
order to predict the behavior of their motion.
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In solar system, the planets and asteroids rotate around the Sun, while
the moons move around their host planets which in turns also revolves
around the Sun. Some of the typical applications of the three–body
problem are the Sun–planet–moon, the Sun–planet–planet or the Sun–
planet–asteroid systems. The last one has a special significance because it
can be simplified attending the mass of the third body (i.e., the asteroid)
because it is very small compared with the mass of the Sun or the planet.
This implies that the third body does not affect the motions of the Sun
and the planet, which shall call the primaries bodies. Under the previous
condition, i.e. a third body negligible, the three–body problem is reduced
to the so called restricted three–body problem. In this setting, we shall
have the circular or the elliptic restricted three–body problem when the
primaries movement around their center masses is either in circular or in
a elliptic periodic orbit, respectively.

The present work is an analytical study of the equilibrium solutions
of the planar circular restricted three–body problem problem when both
primaries are triaxial bodies. Our results are an extension of some our
previous works and some other publications. The existence and stability
of libration points as well as the finding of periodic orbits around these
points in restricted three–body problem with the effect the lack of the
sphericity of the primaries or the effect of the photogravitational force or
a combination of them are studied in [1]–[14], [18] or in [21]–[25].

The Euler angles are three angles constructed by Leonhard Euler to
determine and describe the exact orientation of a rigid body with respect
to the inertial fixed frame. The importance of these angles is because they
can be used also to represent the orientation of a mobile reference frame
in physics or the orientation of a general basis in 3–dimensional linear
algebra. The Euler angles are considered a sufficient and gentle way to
reach any references frame.

For example in the case in which the Euler angles of the rotational
motion are (θi = ψi = ϕi = 0), [22, 23] study the existence and the sta-
bility of motion around the libration points in the restricted three–body
problem when both primaries are triaxial rigid bodies. While in the case
of the primaries are triaxial bodies and Euler angles of stationary rota-
tional motion are non mutually zero the full construction of the general
equations of motion for the restricted three–body problem can be found
in [19]. Moreover, in [19] is studied the existence and stability of equilib-
rium libration points in the special cases of the Euler angles of rotational
motion are θi = ψi = ϕi = π/2 and θi = ψi = π/2 , ϕi = 0 , i = 1, 2. It
was proved that the three collinear equilibrium points are still unstable
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while the two triangular may be stable. The simple symmetric periodic
orbits were studied and 31 families of these orbits were determined.

[16] presents necessary and sufficient conditions to find the locations
of the three collinear points in five cases in the case of the Euler angles
of rotational motion are accordingly θi = 0, ψi + ϕi = π/2, i = 1, 2. The
linear stability of motion in the vicinity of these points was studied too
in this work.

Inspired in previous works, in this paper we shall consider the restricted
problem of three bodies being both primaries triaxial rigid bodies and the
Euler angles of stationary rotational motion are θi = π/2, ψi = 0, ϕi =
π/2 and θi = π/2, ψi = ϕi = 0 for i = 1, 2,. This paper is organized as
follows. In section 2 the equations of motion of the restricted three-body
problem when the primaries are triaxial rigid bodies are stated being the
Euler angles of rotational motion equal to θi = π/2, ψi = 0, ϕi = π/2.
In sections 3 and 4) the existence and the stability of the libration points
are studied. In section 5 we summarize the results obtained along the
work and we state how can be obtained the analogous results in the case
of Euler angles of rotational motion are equal to θi = π/2, ψi = 0, ϕi = 0.

We underline the importance of this study because this model has a
clear application in Celestial Mechanics when the third body moves in
gravitational fields of some objects with irregular shapes, such as Jupiter
model.

2. Equations of motion

Let us adopt the notation and terminology of [19]. In the case of the
Euler angels of rotational motion are equal to θi = π/2, ψi = 0, ϕi = π/2,
the values of directions cosines are zero except for a3i = b1i = −1, c2i = 1.
Thus, the equation of motion of the infinitesimal body is governed by

(1)
ẍ− 2nẏ = Ωx,

ÿ + 2nẋ = Ωy,

where

Ω =
2∑

i=1

µi [T1i + T2i + T3i + T4i] ,
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and

T1i = (
n2

2
r2i +

1

ri
),

T2i =
1

r3i
(A1i + A2i + A3i),

T3i = − 3

2r5i
(A1i + A3i)[(x+ (−1)iµ3−i)]

2

T4i = − 3

2r5i
(A1i + A2i)y

2,

(2)
r21 = (x− µ)2 + y2,

r22 = (x− µ+ 1)2 + y2,

and the mean motion n is governed by

(3) n2 = 1 +
3

2

2∑
i=1

(2A2i − A1i − A3i),

where

(4) A1i =
a2i

5R2
, A2i =

b2i
5R2

, A3i =
c2i

5R2
,

and R is the separation distance between the primaries, µ1 = 1 − µ,
µ2 = µ, ai, bi and ci i = 1, 2, are the principal axes of the triaxial rigid
bodies. Eq. (3) of the mean motion when the rotational motion of Euler
angles are θi = π/2, ψi = 0, ϕi = π/2 is agree with the mean motion
when Euler angles are θi = 0, ψi + ϕi = π/2, see [19].

3. Collinear points

Since Ω = Ω(x, y), then

dΩ

dt
= ẋΩx + ẏΩy.

(1) admits the Jacobi integral in the form

ẋ2 + ẏ2 − 2Ω + C = 0.

and the locations of equilibrium points are the solutions of

Ωx = Ωy = 0.
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where
(5)
Ωx = (1− µ)(x− µ)[f1(r1) + q1(x, y, r1)] + µ(x− µ+ 1)[f2(r2) + q2(x, y, r2)],

Ωy = y[(1− µ)[g1(r1) + q1(x, y, r1)] + µ[g2(r2) + q2(x, y, r2)]],

and

(6)

fi(ri) = (n2 − 1

r3i
)− 3

2r5i
(2A2i − A1i + 4A3i) ,

gi(ri) = (n2 − 1

r3i
)− 3

2r5i
(4A2i − A1i + 2A3i) ,

qi(x, y, ri) =
15

2r7i

[
A3i [x+ (−1)iµ3−i]

2
+ A2iy

2
]
.

Assume that the triaxial rigid body of mass mi, i = 1, 2, be nearly a
sphere with radius R0i, thereby the principal axes of the triaxial rigid
bodies can be written as

(7)
ai = R0i + σ1i,
bi = R0i + σ2i,
ci = R0i + σ3i,

where σ1i , σ2i , σ3i � 1 such that σ1i 6= σ2i 6= σ3i, see [19] for more
details.

Substituting (7) into (4), we get

(8)
A1i = λi + δiσ1i,
A2i = λi + δiσ2i,
A3i = λi + δiσ3i,

where λi =
R2

0i

5R2
, δi =

2R0i

5R2
.

After substituting (8) into (5), (6) and (3), we get
(9)
Ωx = (1− µ)(x− µ)[F1(r1) +Q1(x, y, r1)] + µ(x− µ+ 1)[F2(r2) +Q2(x, y, r2)],

Ωy = y[(1− µ)[G1(r1) +Q1(x, y, r1)] + µ[G2(r2) +Q2(x, y, r2)]],
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where

(10)

Fi(ri) = (n2 − 1

r3i
)− 3δi

2r5i
(2σ2i − σ1i + 4σ3i),

Gi(ri) = (n2 − 1

r3i
)− 3δi

2r5i
(4σ2i − σ1i + 2σ3i),

Qi(x, y, ri) =
15δi
2r7i

(
σ3i [x+ (−1)iµ3−i]

2
+ σ2iy

2
)
,

and the mean motion will take the form

(11) n2 = 1 +
3

2

2∑
i=1

δi (2σ2i − σ1i − σ3i) .

The location of the collinear points Li, i = 1, 2, 3 are the solution Ωx =
Ωy = 0 with y = 0. Using (9), (10) and (11), we obtain
(12)

f(x) =



x

[
1 +

3δ1
2

(2σ21 − σ11 − σ31) +
3δ2
2

(2σ22 − σ12 − σ32)
]

−(1− µ)(x− µ)

r31
− 3δ1(1− µ)(x− µ)

r51
[(2σ21 − σ11 − σ31)]

−µ(x− µ+ 1)

r32
− 3δ2µ(x− µ+ 1)

r52
[(2σ22 − σ12 − σ32)]


= 0,

where r1 = |x− µ| and r2 = |x− µ+ 1|.
The zeros of (12) represent the locations of the collinear points in the

case of Euler angles of rotational motion be equal to θi = π/2, ψi =
0, ϕi = π/2. We note that this result agrees with the result obtained
when the Euler angles are equal to θi = 0, ψi + ϕi = π/2, see [16].

4. Triangular points

4.1. Locations of the triangular points. To determine the locations
of the triangular points, we have to find the solution of Ωx = Ωy = 0
when y 6= 0. Since the solutions of (9) when the primaries are spherical
bodies are r1 = r2 = 1, thereby we can write the solution of (9) when
both primary bodies are triaxial rigid bodies in the form

(13) r1 = 1 + α,
r2 = 1 + β,
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where α, β � 1. Substituting (13) into (2) removing the high order terms
of α and β, we get

(14)
x4,5 = −1

2
[1− 2µ+ 2(α− β)],

y4,5 = ±
√

3

2
[1 +

2

3
(α + β)].

Now substituting (13), (14) into (9) and (10) using (11) we are able to
obtain the square of the value of the mean motion n2. Hence the values
of α and β are governed by
(15)

α = −1

8
[11δ1(σ21 − σ31) + 4δ2(2σ22 − σ12 − σ32) +

4δ2µ

(1− µ)
(σ32 − σ22)],

β = −1

8
[4δ1(2σ21 − σ11 − σ32) + 11δ2(σ22 − σ32) +

4δ1(1− µ)

µ
(σ31 − σ21)].

Now we emphasize that we are previous development the locations of
the triangular points may change depending on the values of the quanti-
ties α and β which characterize the triaxiallity of the primary bodies.

4.2. Stability of the triangular points. In this subsection we shall
study the linear stability of the possible motion in the vicinity of the
triangular points.Thereby let (x0, y0) be the coordinates of the triangular
points L4 or L5, and we assume that the variation ξ and η describes the
possible motion of the infinitesimal body in the neighborhood of one the
triangular points where this variation is defined by

(16) ξ = x− x0,
η = y − y0.

Substituting (16) into (1) and since we are studying the the linear sta-
bility of the motion, we do not consider the effect of the terms of high
order of ξ and η. Then, considering only the linear terms the variational
equations are equal to

ξ̈ − 2nη̇ = Ω0
xxξ + Ω0

xyη,

η̈ + 2nξ̇ = Ω0
xyξ + Ω0

yyη.

Here the subscripts x, y denote the partial derivatives of order two for Ω
and the superscript 0 indicates that such derivative is evaluated at one
of the triangular points. Thus, the characteristic equation associated to
the dynamical system given by (16) is equal to

(17) ω4 +
(
4n2 − Ω0

xx − Ω0
yy

)
ω2 + Ω0

xxΩ0
yy −

(
Ω0

xy

)2
= 0.
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The stability of the variational dynamical system depends on the values
of ω. If the quadratic part of (17) has two not equal negative roots for
ω2, then solution is stable otherwise it is not, see [1, 3, 5, 7, 15] for more
details.

Now we deduce stability conditions for the motion in the proximity of
the triangular points L4,5 from the characteristic equations. The motion
is stable if the four roots of (17) are pure imaginary and the condition
which guarantees this is

(18) 4n2 > (Ω0
xx + Ω0

yy)

where Ω0
xx, Ω0

xy and Ω0
yy are given at one of triangular points L4,5 being the

Euler angles of the rotational motion equal to θi = π/2, ψi = 0, ϕi = π/2
, i = 1, 2, and

Ω0
xx =



n2 − 1

4
(1− µ) [1− 9α + 12β]

−1

4
µ [1 + 12α− 9β]

+
3δ1
32

(1− µ) [41σ31 − 37σ21 − 4σ11]

+
3δ2
32
µ [41σ32 − 37σ22 − 4σ12]


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Ω0
xy =



−(1− µ)

[
(1− 3α)∓

√
3

4
(7α + 4β − 3)

]

−µ

[
(1− 3β)∓

√
3

4
(−4α− 7β + 3)

]

−3δ1
2

(1− µ)(1± 5
√

3

4
) [2σ21 + 4σ31 − σ11]

+
15µ

8
(1− δ1)

[
(1± 7

√
3

4
)(3σ21 + σ31)∓ 2

√
3σ21

]

−3δ2
2
µ(1∓ 5

√
3

4
) [2σ22 + 4σ32 − σ12]

+
15δ2

8
µ

[
(1∓ 7

√
3

4
)(3σ22 + σ32)± 2

√
3σ22

]



Ω0
yy =



n2 +
1

4
(1− µ) [5− 21α + 12β]

+
1

4
µ [5 + 12α− 21β]

+
3δ1
32

(1− µ) [3σ31 + 41σ21 − 44σ11]

+
3δ2
32
µ [3σ32 + 41σ22 − 44σ12]


where the upper sign denotes the value for L4 while the lower sign is for
L5.

Thus (18) provides necessary and sufficient condition for the stability
of motion around the triangular points. Hence the triangular points are
stable if this condition is satisfied otherwise they are unstable. Further-
more the solution with long and short periodic terms for stable motion
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can be written in the following form

ξ(t) =
2∑

i=1

Ai cos(ωit+ θ0),

η(t) =
2∑

i=1

Bi cos(ωit+ θ0),

where Ai, Bi and θ0 , i = 1, 2, are constants that will be evaluated from
the initial conditions and ω1 and ω2 are the angular frequencies or mean
motion with respect to long and short periodic orbits respectively.

5. Conclusions

In the framework of the primaries being triaxial bodies, when the Euler
angles of rotational motion are equal to θi = π/2 , ψi = 0 and ϕi = π/2,
we found that the existence and linear stability of the collinear points
are agree with the results stated [16] when the Euler angles are equal
to θi = 0, ψi + ϕi = π/2 for the restricted three–body problem. The
locations of the triangular points and the conditions of stable motion
around these points are explicitely found.

Moreover we show that the locations of triangular points and the region
of stable motion around these points may be change depending on the
parameters of the triaxiallity. Furthermore we emphasize that in the case
of Euler angles of the rotational motion are θi = π/2 and = ψi = ϕi = 0,
i = 1, 2, the corresponding results can be obtained by interchanging the
parameters σ21 by σ31 as well as σ22 by σ32.
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