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Abstract 

     In this paper, we present an analytical study about the dynamics of the tethered 

satellite system when the central gravitational field is generated by an object whose 

variable mass. We prove that the tethered satellite equations of motion in general 

case and satellite approximation are different from the classical one when the 

variable mass is considered. We also prove that these equations can be reduced to 

the classical case under the first Meshcherskii’s law for variable mass. Moreover, 

we show that Meshcherskii’s transformation is not valid for the dumbbell satellite 

system dynamics.  
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1 Introduction 

       At the end of nineteenth century, the concept of a Tethered Satellite Systems 

(TSS) was first established by Tsiolkovsky in 1895. He suggested a tools of creating 

artificial gravity that includes connecting a spacecraft to a counterweight by a long 

chain and spinning the entire system. In Tsiolkovsky's study, the length of the tether 

was 0.5 km. The first experimental investigation of a TSS in space was carried out 

by NASA as a part of Gemini programs (Gemini 11 and Gemini 12) in the 1960's, 

Beletsky and Levin (1993). On the Gemini 11 flight in 1966, the Gemini spacecraft 

was tethered to the Agena target vehicle by a 0.03 km. The main purpose of the 

linking between the two spacecraft was to test the docking maneuvers in space as 

well as to check the possibility of using a TSS to create artificial gravity, as proposed 

by Tsiolkovsky. Later in the same year, similar experiments were carried out also on 

the Gemini 12 flight.  

     The investigation of the first practical use for space TSS was a class of space 

sensor. Colombo et al. (1975) proposed using tethered satellites as sensors to 

measure both the gravitational gradient at different positions around the earth and 

the magnetic field surrounding the Earth. In general, TSS have been proposed for a 

number of space applications involving formation control of satellite clusters, orbital 

maneuvering of satellites, and numerous scientific applications such as observations 

of Earth's upper atmosphere and magnetic field. TSS are not a new concept, 

however, and in fact have been studied since well before the dawn of human space 
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flight. In addition to the various theoretical studies of TSS that have been performed 

in the past, a number of TSS missions have already own in space, providing a solid 

foundation for the design of future missions and the further development of the 

theory underlying the behavior of TSS. 

        TSS are powerful systems to accomplish many distinct types of space missions 

that cannot be achieved with typical satellites. Therefore, early contributions into the 

dynamics of tethered satellites in the context of rotating space stations were 

performed by Austin (1965), Pengelley (1966), Chobotov (1967) and Nixon (1972). 

The utility of tethered satellites in gathering planetary atmospheric data has also been 

investigated by Hurlbut and potter (1991), Pasca and Lorenzini (1991). Polzin et al. 

(2002) studied a tethered array as the basis of the Terrestrial Planet Finder. 

Moreover, the dynamics of tethered sections of larger, rigid spacecraft have been 

investigated, see Quadrelli (2003). A variety of other uses are presented in the 

Tethers in Space, Handbook of Cosmo and Lorenzini (1997).                                  

      In recent years, with the increasing of knowledge about TSS some researchers 

focus their studied on the dynamics of tethered satellite systems. For instance, Wong 

and Misra (2008) examined the planar dynamics of a wheel-and-spoke configured 

multi-spacecraft system, connected together by variable length tethers, near the 

second Sun–Earth Lagrangian point. They also found a closed form solutions of the 

system under some simple tether length functions and obtained numerical results for 

the tether pitch librations under more complex tether length functions, along with 

the control effort required to maintain the desired tether librations. Zhang et al. 

(2012) presented several criteria on the existence of periodic solutions for a TSS in 

an elliptical orbit.  They determined the uniqueness of periodic solutions for the TSS 

in a circular orbit on the basis of coincidence degree theory. Furthermore, they also 

addressed the conditions on the global asymptotic stability of the equilibrium states 
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for the TSS in accordance with the Lyapunov stability theory and Barbashin–

Krasovski theory.  Gang et al. (2013) established that the dynamics of a rotating TSS 

in the vicinity of libration points are highly nonlinear and inherently unstable. They 

designed suboptimal output tracking controller in order to achieve the station-

keeping control for the rotating tethered system based on the   technique. 

Furthermore, the authors also presented numerical simulation results demonstrate 

that the capacity of the proposed controller in terms of tracking. Avanzini and Fedi 

(2014) discussed the relevance of eccentric reference orbits on the dynamics of a 

tethered formation, when a massive cable model is included in the analysis of a 

multi-tethered satellite formation. They stated that the examined formations in their 

study are hub-and-spoke (HAS) and closed-hub-and-spoke (CHAS) configurations 

for in-plane and Earth-facing spin planes. The authors also studied the stability of 

the formations by means of numerical simulation, together with the evaluation of the 

effects of eccentricity on tether elongation, agents relative position, and formation 

orientation and shape. 

        We will recall a dumbbell satellite systems (DSS) when the length between two 

stations or two bodies is a constant. According to this joint, there are many 

significant contraptions. For instance, Celletti and Sidorenko (2008) investigated the 

dumbbell satellite’s attitude dynamics, when the center of mass moves on a 

Keplerian trajectory. They found a stable relative equilibrium position in case of 

circular orbits which disappears as far as elliptic trajectories are considered. They 

replaced the equilibrium position by planar periodic motions and they proved this 

motion is unstable with respect to out–of–plane perturbations. They also gave some 

numerical evidences of the existence of stable spatial periodic motions. Nakanishi et 

al. (2011) searched periodic solutions for a dumbbell model in elliptic orbits using 

bifurcation. They projected the trajectories of the dumbbell  on the van der Pol planes 
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as well as they used these trajectories as a tool to  predict when the control of delayed 

feedback control will need to act to maintain the periodic motions. Much research 

into the dynamics of DSS was conducted by Munitsina (2007), Burov and Dugain 

(2011), Burov et al. (2012), Guirao et al. (2013), Maciejewski et al. (2013) and 

Abouelmagd et al. (2015).                                                

      There are several aspects of the dynamics of the tethered or dumbbell satellites 

systems are studied by many authors in the framework of both of them moves in a 

central gravity field generated by an object whose a constant mass. But in this paper, 

we will present analytical study about the tethered and dumbbell satellites systems 

dynamics when the central gravity field is created by a body whose variable mass. 

This paper will be organized as follow, actually a brief history of tethered satellite is 

presented in Section 1. The model of study and assumptions are designed in Section 

2. The tethered satellite equations of motion in general case with variable mass are 

constructed in Section 3. While these equations under Meshcherskii’s 

transformation are conducted in Section 4. Moreover, the equations of motion in 

satellite approximation with variable mass are also derived in Section 5.  After that, 

in Section 6 dumbbell satellite equations of motions with variable mass are found. 

At the end, the conclusion is drawn in Section 7. In addition, the significant results 

of our work are presented through theorems from one to five. 

2 Model descriptions 

    We assume that the dumbbell satellite is formed by massless rod of length   

varies in time with two constant masses 1m and 2m  placed at its ends. Let c  be the 

center of two masses moving in a gravity central field generated by body whose mass 

m  is variable with time and located at o  where the distance between o  and c is 

such that / 1  . Let us consider the orbital reference frame  xyc  with origin at 
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the dumbbell’s center, and the polar coordinates of the center are  ,  . While the 

rotation of the satellite relative to ray oc  will be determined by an angle  . 

Furthermore, we denote the reduced mass by   and the sum of two masses by sm  

where 1 2 / sm m m   in which 1 2sm m m  , see Fig.1 for details. 

 

Fig.1 The Diagram of the tethered satellite model 

     Now, we suppose that 
i

  is the positions vectors of  im  ,  1,2i   with respect 

to o . While the vector  i  denotes the position vector of  im   with respect to the 

center of mass for the dumbbell satellite.  
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     Therefore, the magnitudes of the position vectors 
i

 are controlled by 

  
22 2 2 2 1 cos

i
i i i     


                                                           (1)  

where 

3( ) ( ) /i i st m t m                                                                                  (2) 

2.1 Potential of model 

        It concerns the interaction of two point masses moving under a mutual 

gravitational attraction described by Newton’s universal law of gravitation, the 

gravitational potential V of our system can be written in the below form 

1 2

1 2

( )
m m

V Gm t
 

 
   

 
                                                                            (3) 

where G  is the universal constant of gravitation which its value depends on the 

unit chosen.  

2.2 Kinetic energy of model 

    To construct the kinetic energy of our system, let the vectors 1e  and  2e are an 

orthogonal set of unit vectors with  1e  corresponding to the direction from  o  to c . 

While i  and j  are another orthogonal set of vectors such that i  is a unit vector in 

the direction of  X   axis. Hence the position vector 
i

  for the mass im  is 

ii
                                                                                                      (4)       

where 
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 cos sini j                                                                                 (5.1)                                            

   1 21 cos sin
i

i i e e                                                                  (5.2)       

 1 cos sin
i

ie i j
i i

 
 

    
        

    
                                           (5.3) 

substituting Equations (5) in to (4) we obtain 

       cos 1 cos sin 1 sin
i i

i ii
i j                    

   
(6) 

since the velocity vector iv  of mass im  is 

i
i

d
v

dt


                                                                                                     (7)       

after substituting Equation (6) into (7) with some simple calculations, the value 

square of velocity  iv  will be governed by  

     

   

   

22 2 2 2

2

2

2 1 sin

2 1 cos

2 1 cossin 2 1 sin

i
i i

i
i i

i i
i i i

v

         

   

    

     
 
 

   
 
 
     
 

                    (8) 

since the kinetic energy of the dumbbell satellite system is  

2
2

1

1

2
i i

i

T m v


                                                                                                (9) 

substituting Equation (8) into (9), the kinetic energy can be written in the form 
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s rT T T T                                                                                           (10)        

where the first term sT is the kinetic energy of the center’s motion and the second 

term  T  is the kinetic energy of the rotation of the dumbbell around its center of 

mass, while the third term T is the kinetic energy of the vibration of the dumbbell.  

The value of these terms can be written as the following 

 2 2 21

2
s sT m                                                                               (11.1)        

 
221

2
rT                                                                                     (11.2)   

21

2
T                                                                                                 (11.3)      

hence  

   
22 2 2 2 21 1 1

2 2 2
sT m                                            (12)  

    Note that if the joined rod between two masses does not change with time, the 

third term in the kinetic energy must be omitted.         

2.4 The Lagrangian function of model 

   Since Lagrange’s function L  is defined by L T V   from Equations (3) and 

(12) we obtain 

   
22 2 2 2 2 1 2

1 2

1 1 1

2 2 2
s

m m
L m Gm      

 

 
       

 
 (13) 

Therefore, the equations of motion will be governed by 
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0
d L L

dt  

  
    

 ,   , ,                                                                (14) 

3 Equation of motion  

3.1 The general equations of motion  

Substituting Equation (13) into (14) when  , ,      the equations of motion 

can be written as in the following form 

 2 2 2
sm p                                                                       (15.1) 

     2 1 1 2 2

3 3
1 2

cos cos
0s

m m
m Gm

     
 

 

  
     

 
    (15.2) 

   2

3 3
1 2

1 1
2 sin 0Gm       

 

 
       

 

           

 

(15.3) 

where p  is a constant expresses the angular momentum conservation, 1  and 2  

are given as in Equation (2), while ( )m m t  and ( )t  are functions of time. 

3.2 The center of tethered motion 

     Since  ,   is the coordinate of the tethered center, therefore the kinetic 

energy sT  is given as in Equation (11.1), while the potential of the center of mass 

sV  is                        

s
s

Gmm
V


                                                                                           (16)   
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  Consequently, the Lagrange function  sL  for the center of mass can be represented 

in the form 

 2 2 21

2

s
s s

Gmm
L m   


                                                           (17)  

     Substituting Equation (17) into (14) with sL L  ,  ,    and taking 

account that the equations of motion can be written on the form 

0s sL Ld

dt  

  
    

                                                                             (18.1) 

0s sL Ld

dt  

  
  

  
                                                                            (18.2) 

hence, the equations of  motion of tethered’s center will be controlled by 

2

2

Gm
 


                                                                                  (19.1) 

2
sm F     or

   
2 h                                                                   (19.2) 

where F  is a constant and h  is the angular momentum which is a constant too, 

that can be evaluated by the initial conditions. 

4 Meshcherskii’s transformation 

   We assume that the mass of the central gravitational field vary according to the 

Meshcherskii’s law  

0( ) / ( )m t m R t  , 
2/d R d    , 

2/d R d   ,
2( )dt R t d   
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where 
2 2R t t       , 0m  ,   ,   and   are constants, i.e. R  is a 

functions of time. 

      Now we introduce a new coordinates by using Meshcherskii’s transformation 

(Meshcherskii, 1952)  

( )rR t  , ( )i ir R t   , ( )lR t   , ( )i il R t  ,  1,2i   i.e. we need 

transform the coordinate  , , ,t    to  , , ,r    .  

      Here we refer to if 
2   the function R   becomes a linear in time (

( )R t t    ) and the first law of Meshcherskii is satisfied, while the case of 

0   leads to the second law (Jha and Shrivastava, 2001).    

4.1 The equations of motion for the general case under Meshcherskii’s 

transformation  

Theorem 1: If a tethered satellite moves in a gravity field generated by a body whose 

variable mass, the equations of motion in general case is different from classical one 

and they can be reduced to the classical case under applying the first  Meshcherskii’s 

law of variable mass.  

 Proof theorem 1 

     Applying Meshcherskii’s transformation on Equations (15) we obtain 

 2 2 2
sm r l l p                                                                       (20.1) 

 2 2
sm r r       

  
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   1 1 2 2

3 3
1 2

cos cos
0

m r l m r l
k

r r

   
    

 

  (20.2) 

   2

3 3
1 2

1 1
2 sin 0l ll k lr

r r
       

 
           

 

                

 

(20.3) 

where   /d d   , 0k Gm   and  p  is a constant  

these equations can be written in the form 

 2 2 2
sm r l l p                                                                        (21.1) 

 
2

2 2
2

2 2
s

p l
r r

m r l

  
 



           

  

                                   
   1 1 2 2

3 3
1 2

cos cos
0

s

m r l m r lk

m r r

   
    

 

 (21.2) 

 
   

 

3 3

2 2 2 2

2 2s

s s

l r m r l p
rl lr

lr m r l lr m r l




 
 

 
     

 
       

                                          
 2 2

3 3
1 2

sin 1 1
0

s

s

k m r l

m lr r r

   
    

 
          

 

(21.3) 

     Equations (21) represent the equation of motion for tethered satellite with 

variable mass (the central gravitational field generated by a body whose variable 

mass).  It is different from the classical case (the central gravitational field generated 
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by a body whose constant mass) of Burov and Dugain (2011). But these equations 

can be reduced to the classical one if 
2  , i.e.  ( )R t t    is a linear 

functions of t , ending the proof.  

4.2 Tethered’s center motion under Meshcherskii’s transformation 

Theorem 2: If a tethered satellite moves in a gravity field generated by a body whose 

variable mass, the trajectory of a tethered satellite mass center is different from the 

classical one. While if we use the first Meshcherskii’s law of variable mass the 

solution is periodic and it coincides with the elliptical classical case. 

 Proof theorem 2 

     Applying Meshcherskii’s transformation on Equations (19) we obtain 

 2 2

2

k
r r r

r
                                                                   (22.1) 

2
sm r F    or

   
2r h                                                                       (22.2) 

   The above equations is different from the classical one, while these equations is 

coincident with the classical case if 
2  .  Therefore, they can be rewritten in 

the following form 

2

2

k
r r

r
                                                                                        (23.1) 

2
sm r F    or

   
2r h                                                                      (23.2) 

     Equations (23) represents tethered’s center motion, which will be followed a 

Kepler’s orbit. Hence the solution is periodic and it can be written in the form 
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 

2 /

1 cos

h k
r

e 



                                                                                      (24) 

where e  is the orbit eccentricity such that 0 1e   in the framework of elliptic 

orbits and   is a true anomaly of the center of mass, which ends the proof.  

5 The equations of motion in the satellite approximation  

Theorem 3: If a tethered satellite moves in a gravity field generated by a body whose 

variable mass, the equations of motion in the satellite approximation is different 

from the classical one and they can be reduced to the classical equations, if the first 

Meshcherskii’s law of variable mass is applied. 

   Proof theorem 3 

     In order to construct the equations of motion in satellite approximation, firstly we 

will substitute Equations (1) into (3) to obtain the potential in satellite 

approximation.  Since   , we will take in our consideration neglecting all terms 

that contain coefficients with 
3o( / )   or more. The approximation of the potential 

energy is  

 
2

23cos 1
2

s

Gm
V m

 


 

  
        

                                                (25)

 

therefore, the Lagrangian function will be governed by 

   

 

22 2 2 2 2

2
2

3

1 1 1

2 2 2

      3cos 1
2

s

s

L m

m
Gm

      




 

    

 
    

 

                                 (26)
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      Substituting Equation (26) into (14) we obtain 

 2 2 2
sm p                                                                         (27.1) 

 
2

2 2

2 4

3
3cos 1 0

2

s
s

m
m k


  

 

 
        

 
                              (27.2)          

   
2

2

3

3
2 cos sin 0

k
       


                               (27.3) 

   Using the Meshcherskii’s law of variable mass with some simple calculations, 

the equations of motion in satellite approximation can be written in the form  

 2 2 2
sm r l l p                                                                         (28.1) 

   
2

2 2 2

2 4

3
3cos 1 0

2

s
s

m l
m r r k

r r


   

 
             

 
   (28.2)          

   
2

2

3

3
2 cos sin 0

k l
l ll

r


                                        (28.3) 

   The above equations is different from the classical one and represent the equations 

of motions of tethered satellite system in satellite approximation, while these 

equations are coincident with the classical case if 
2  . 

Theorem 4: If a tethered satellite moves in a gravity field generated by a body whose 

variable mass, the equations of motion in the satellite approximation, in some special 

cases, can be reduced to Beletsky's equation if the first Meshcherskii’s law of 

variable mass is applied. 
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 Proof theorem 4 

   The first step, we prove Theorem 3. After that we recall Equation (28.3) and 

rewrite it in the form 

    
3

3
2 cos sin 0

l k

l r
     


                                                    (29) 

    It is possible to introduce the true anomaly    as an independent variable in 

Equation (29) instead of  .  Now replacing the variable   with the variable   in 

sense that ( )     where 
2r h  . Therefore, we obtain  

 
2

2

3
( ) 1 cos

k
e

h
                                                                               (30) 

In this case, the rules of derivatives can be written in the form 

d d

d d 
                                                                                                  (31.1)                        

2 2
2

2 2

d d d

dd d


 
                                                                         (31.2) 

where ,    means that 
d

d




 and 

2

2

d

d




 respectively 

      Insert Equations (31) into (29) and using Equation (30), we obtain 

 
     1 cos 2 1 cos sin 1

3cos sin 0

l
e e e

l


     

 

 
     

 

 

                         (32) 
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     If  l  is a constant ( 0l  ) or the change rate of l  is very small such that 1l  

in which / 0l l  consequently, Equation (32) can be reduced to Beletsky equation, 

Beletsky (1966). Therefore Equation (32) can be rewritten in the form of Beletsky 

equation  

 1 cos 2 sin 3cos sin 2 sine e e                                      (33)     

    which ends the proof. 

6 Dumbbell satellite equation of motion  

       In this section we study dumbbell satellite equations when it moves in a gravity 

field generated by a body whose variable mass. For a dumbbell satellite the length 

of weightless rod    is a constant. Therefore the equations of motion under 

Meshcherskii’s transformation will be controlled by 

 

2 2
2

2 2sm r p
R R


 

 
 

     
 

                                                           (34.1) 

 2 2
sm r r       

  
  

                              

1 2
1 2

3 3
1 2

cos cos

0

m r m r
R R

k
r r

 
 

    
     

      
 
 
 

  (34.2) 

    2

3 3
1 2

1 1
2 sin 0t k rR

r r
        

 
               

   

(34.3) 
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     Equations (34) is still depend on R  (i.e. depends on the variable t  ) under 

Meshcherskii’s transformation where ( )R R t is a function of time, hence this 

transformation is not valid for the dynamics of the dumbbell satellite.       

 7 Conclusion  

      The tethered satellite equations of motions with variable mass are found in 

the general case and satellite approximation as well as the equations which 

represent the tethered center of motion. We use Meshcherskii’s transformation 

to reduce the aforementioned equations to the classical one. We also prove that 

the pass of the mass center is periodic in the framework of elliptic orbits. 

Moreover, we investigate that the equations of motion in the satellite 

approximation under Meshcherskii's transformation can be reduced to 

Beletsky equation when 0l     or  / 1l l . At the end, we derive the 

dumbbell’s equations with variable mass and we show that the Meshcherskii’s 

transformation is not valid for the dynamics of dumbbell satellite system. 
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