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Abstract. One of the milestones in Fractal Geometry is the so-called Moran’s

Theorem, which allows the calculation of the similarity dimension of any strict

self-similar set under the open set condition. In this paper, we contribute a
generalized version of the Moran’s theorem, which does not require the OSC to

be satisfied by the similitudes that give rise to the corresponding attractor. To
deal with, two generalized versions for the classical fractal dimensions, namely,

the box dimension and the Hausdorff dimension, are explored and described in

terms of fractal structures, which constitute a kind of uniform spaces. Finally,
we posit the similarity dimension of any IFS-attractor in terms of irreducible

fractal structures.

1. Introduction

In this paper, we re-explore a classical problem in Fractal Geometry, namely, how
to calculate the Hausdorff dimension of the attractor of an iterated function system
(IFS in the sequel). It is worth mentioning that a particular solution for such an
awkward problem needs the open set condition to be satisfied by the similitudes
of the corresponding IFS. The OSC hypothesis allows to control the overlapping
among the self-similar copies of the whole IFS-attractor, sometimes called as pre-
fractals. Equivalently, it is also said that under the OSC, the pieces fi(K) have
only “small overlap”, which is also called as “just touching”, as pointed out in [18].

We have to trace back to the forties in order to find out the key result that allows
the effective calculation of the Hausdorff dimension for strict IFS-attractors from
their similarity ratios. It was firstly contributed by the Australian mathematician
P.A.P. Moran, who became a Besicovitch pupil at Cambridge (c.f. [14, Theorem
II]). It is worth mentioning that this theorem becomes a particular case of stronger
[14, Theorem III], though it could be also deduced from [14, Theorem I], which
establishes a connection between the Hausdorff dimension and the existence of finite
measures having some metric properties. More specifically, it states that whether
there exists a finite nonzero measure φ such that φ(R) ≤ κ(diam (R))p, where R
is a q−dimensional cube containing a compact subset E ⊆ Rq, for appropriate
constants κ and p, then dimH(E) ≥ p. In addition, he also provided an easy
formula to calculate the Hausdorff dimension of attractors derived from IFSs whose
similitudes have a common similarity ratio. That quantity only depends on the
number of similitudes in that IFS and such a common value, as well.

A new point of view regarding fractals arises from the concept of fractal structure,
which derives from asymmetric topology. A fractal structure is a kind of uniformity
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which provides better approaches of a given space as deeper stages in its structure,
called levels, are explored. In fact, the underlying idea is to endow a fractal structure
on a (topological) space, which allows to study fractal patterns therein, in contrast
to understand such a space as a fractal itself depending on the self-similar properties
it presents at a whole range of scales. It is also worth mentioning that fractal
structures do provide a novel context where new Hausdorff type measures could be
defined. In other words, the classical fractal dimension models, namely, both the
box dimension and the Hausdorff dimension, remain as particular cases from some
discrete models of fractal dimension for a fractal structure that are explored along
this paper. Thus, the main contribution in this paper is to prove a generalized
Moran’s theorem for IFS-attractors which are not required to be under the OSC.

The structure of this paper is as follows. In Section 2, we provide all the math-
ematical background which allows to make this study self-contained. This includes
the basics on IFS-attractors, the OSC, fractal structures, and in particular, the nat-
ural fractal structure which any (strict) self-similar set can be endowed with, as well
as a brief description regarding the classical fractal dimension models, namely, both
the box dimension and the Hausdorff dimension. Section 3 explains how the dis-
crete models of fractal dimension we explore along this paper lead to generalize the
classical fractal dimensions. This has been carried out through both Theorems (3.6)
and (3.8). Section 4 contains the main result in this paper, namely, the generalized
Moran’s Theorem (see upcoming Theorem (4.1)). Finally, Section 5 summarizes
the main results contributed along this paper and also provides an interesting open
question regarding the OSC in terms of irreducible fractal structures.

2. Preliminaries

2.1. IFS-attractors. Let k ≥ 2. By an IFS, we understand a finite collection of
similitudes on Rd, say F = {f1, . . . , fk}, where each self-map fi : Rd −→ Rd fulfills
the following equality:

d(fi(x), fi(y)) = ci d(x, y), for all x, y ∈ Rd,

ci ∈ (0, 1) being its similarity ratio, and d denotes the Euclidean distance. There
exists a unique compact nonempty subset K ⊂ Rd satisfying the next Hutchinson’s
equation [12]:

(2.1) K =

k⋃
i=1

fi(K).

K is called the IFS-attractor (equivalently, the self-similar set generated by F) and
consists of (smaller) self-similar copies Ki of the whole attractor K, which are also
known as pre-fractals of K [7]. In fact, it holds that Ki = fi(K), for all i = 1, . . . , k.
We shall also denote Kij = fi(fj(K)), and so on. In general, we will follow the
notation used in Bandt’s paper [4]: let n ∈ N and S = {1, . . . , k} be a finite
alphabet. Moreover, let us denote Sn = {i = i1 · · · in : ij ∈ S, j = 1, . . . , n} the
collection of all n−length words from S. Further, we can also write fi = fi1◦· · ·◦fin ,
ci = ci1 · · · cin , and Ki = fi(K), as well. Accordingly, Eq. (2.1) can be rewritten
equivalently in the following terms:

K =
⋃
i∈Sn

Ki.
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Letting n → ∞, the so-called address map π : S∞ −→ K yields as a continuous
map from the set S∞ of infinite length words (sequences) onto the IFS-attractor
K.

2.2. The open set condition (OSC). We say that the IFS F = {f1, . . . , fk} (or
K, for short) fulfills the open set condition (OSC) if there exists a nonempty open
subset V ⊆ Rd such that fi(V ) are pairwise disjoint for i = 1, . . . , k and all of them
are contained in V . Mathematically,

k⋃
i=1

fi(V ) ⊆ V,where fi(V ) ∩ fj(V ) = ∅,provided that i 6= j.

As it was stated in [4], the open subset V is named a feasible open set of the
similitudes fi ∈ F (or of K). The OSC was first contributed by Moran in [14] to
show that the canonical Hausdorff measure is positive on the IFS-attractor K. The
reciprocal is also true, namely, a positive Hausdorff measure implies the OSC. This
fact was contributed by Schief [18], who also provided the following combinatorial
condition, which is equivalent to the OSC: there exists an integer N such that at
most N incomparable pieces Aj of size ≥ ε can intersect the ε−neighborhood of a
piece Ai of diameter ε. On the other hand, Bandt and Graf proved that the OSC
can be also formulated in algebraic terms via the so-called neighbor map condition
[3]. To deal with, they considered the following collection of neighbor maps:

N =
{
h = f−1

i fj : i , j ∈ S∗, i1 6= j1
}
, where S∗ =

⋃
n≥1

Sn.

Hence, that algebraic formulation for the OSC is as follows: there exists a constant
κ > 0 such that ‖h − id ‖ > κ, for all neighbor map h ∈ N . Here, the norm of
any affine map g on Rn is given, as usual, by ‖g‖ = sup{g(x) : ‖x‖ ≤ 1}. In other
words, such a condition states that compared to their size, two self-similar copies
Ai and Aj of the attractor K cannot be arbitrarily close to each other.

It is worth mentioning that in [4], the OSC was described from a constructive
viewpoint in terms of a suitable feasible open set, via the so-called central open set
condition. More specifically, a point x ∈ Rd is said to be a forbidden point provided
that there is no feasible open set V such that x ∈ V . Thus, since all the points in
H =

⋃
{h(K) : h ∈ N} are forbidden points for K, then the authors defined therein

the central open set for F as follows:

Vc = {x : d(x,K) < d(x,H)}, where d(x,A) = inf{|x− a| : a ∈ A}.
Hence, it holds that d(x,H) = inf{d(x, h(K)) : h ∈ N}. The following result allows
to characterize the OSC via the central open set Vc.

Theorem 2.1. (c.f. [4], Theorem 1) If the OSC is satisfied, then the central open
set Vc is a valid feasible open set. Otherwise, Vc = ∅.

As a consequence of Theorem 2.1, the OSC yields, if and only if, K 6⊂ H (see [4],
Corollary 2).

On the other hand, since the feasible open set V and the IFS-attractor K may
be disjoint, it holds that the OSC may be too weak to reach theoretical results
regarding the fractal dimension of K. In this way, Lalley strengthened the definition
of the OSC in the following sense [13]: the strong open set condition (SOSC) is
fulfilled iff it is satisfied, additionally, that K ∩ V 6= ∅. Schief also proved that
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the OSC and the SOSC are equivalent on Euclidean subspaces (c.f. [18], Theorem
2.2). This result was further extended to the case of conformal IFS in [17], and
even for self-conformal random fractals [16]. It is also worth mentioning that Schief
explored some conditions to reach the equality between the similarity dimension
and the Hausdorff dimension of self-similar sets in the context of complete metric
spaces [19]. In fact, in such a context, the OSC no longer implies the just mentioned
equality.

2.3. Fractal structures. The concept of fractal structure was first introduced by
Bandt and Retta in [5], and applied afterwards by Arenas and Sánchez-Granero
to characterize non-Archimedeanly quasi-metrizable spaces (c.f. [1]). In fact, they
appear naturally in several topics related to asymmetric topology. A family Γ of
subsets of (a given nonempty set) X is said to be a covering (of X) provided that
X = ∪{A : A ∈ Γ}. Let Γ1 and Γ2 be two coverings of X. By Γ1 ≺ Γ2, we
understand that Γ1 is a refinement of Γ2, namely, for all A ∈ Γ1, there exists
B ∈ Γ2 : A ⊆ B. Further, Γ1 ≺≺ Γ2 means that Γ1 ≺ Γ2, and additionally, that
for all B ∈ Γ2, it holds that B = ∪{A ∈ Γ1 : A ⊆ B}. A fractal structure on X is a
countable family of coverings Γ = {Γn : n ∈ N}, where Γn+1 ≺≺ Γn, for all n ∈ N.
It is worth noting that the covering Γn is called level n of Γ. A fractal structure
induces a transitive base of quasi-uniformity (and hence, a topology) given by the
transitive family of entourages UΓn = {(x, y) ∈ X × X : y ∈ X \

⋃
A∈Γn,x/∈AA}.

To simplify, we shall let that a set can appear twice or more in any level of a
fractal structure. A fractal structure is said to be finite provided that all its levels
are finite coverings. There always exists a natural fractal structure for each IFS-
attractor whose description can be stated in the following terms.

Definition 2.2 (c.f. [2], Definition 4.4). Let F be an IFS whose associated IFS-
attractor is K. The natural fractal structure on K is given as the countable family
of coverings Γ = {Γn : n ∈ N}, where Γn = {fi(K) : i ∈ Sn}.

Remark 2.3. Equivalently, the levels of the natural fractal structure for any IFS-
attractor K could be described as follows: Γ1 = {fi(K) : i ∈ S}, and Γn+1 =
{fi(A) : A ∈ Γn, i ∈ S}, for all n ∈ N.

On the other hand, it holds that any Euclidean space Rd can be always en-
dowed with its so-called natural fractal structure, whose levels are given by (c.f. [9,
Definition 3.1]):

Γn =

{[
k1

2n
,
k1 + 1

2n

]
× · · · ×

[
kd
2n
,
kd + 1

2n

]
: k1, . . . , kd ∈ Z

}
.

Note that such a fractal structure is a tiling consisting of 2−n−cubes on Rd.

2.4. The classical fractal dimensions. Let (X, ρ) be a metric space. Along
this paper, diam (A) will refer to the diameter of any subset A of X, namely,
diam (A) = sup{ρ(x, y) : x, y ∈ A}, as usual. In addition, let F ⊆ X and δ > 0. By
a δ−cover of F , we understand a countable family of subsets {Ui : i ∈ I} such that
F ⊆

⋃
i∈I Ui, and diam (Ui) ≤ δ, as well. Moreover, let Cδ(F ) be the collection of

all δ−covers of F and define the following quantity:

Hsδ(F ) = inf

{∑
i∈I

diam (Ui)
s : {Ui : i ∈ I} ∈ Cδ(F )

}
.
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The expressionHsH(F ) = limδ→0Hsδ(F ) always exists and is named the (s−dimensio-
nal) Hausdorff measure of F . This allows to characterize the Hausdorff dimension
of F as the point s where HsH(F ) jumps from ∞ to zero, namely,

dimH(F ) = sup{s : HsH(F ) =∞} = inf{s : HsH(F ) = 0}.

In particular, it is worth noting that Hdim H(F )
H (F ) ∈ {0, d,∞ : d ∈ (0,∞)}.

Though the Hausdorff dimension is the most accurate model for fractal dimen-
sion, the box dimension becomes more appropriate to deal with empirical applica-
tions. The (lower/upper) box dimension of F ⊆ Rd is defined as the (lower/upper)
limit that follows:

dimB(F ) = lim
δ→0

logNδ(F )

− log δ
,

where Nδ(F ) is the number of δ−cubes that intersect F . Recall that a δ−cube in
Rd is a set of the form {[k1δ, (k1 + 1)δ] × · · · × [kdδ, (kd + 1)δ] : k1, . . . , kd ∈ Z}.
In particular, δ can be discretized as 2−n. Further, Nδ(F ) could be calculated
equivalently as one of the expressions provided in [7, Equivalent definitions 3.1]. In
particular, we should mention here that Nδ(F ) could be calculated as the smallest
number of sets of diameter at most δ that cover F .

3. Extending the classical fractal dimensions

The main goal in this section is to show that the fractal dimension models that
we explore herein from the viewpoint of fractal structures do generalize the classical
fractal dimensions. They are denoted as fractal dimension III and fractal dimension
IV, respectively. The reason for such a notation lies in the fact that they could
be considered as further models from those studied in [9]. More specifically, we
shall prove that fractal dimension III generalizes the box dimension on Euclidean
subsets, whereas fractal dimension IV extends the classical Hausdorff dimension
for any compact Euclidean subspace. Accordingly, the classical fractal dimensions
could be calculated equivalently via these discretized models with respect to the
natural fractal structure which any Euclidean subset can be always endowed with.
To deal with, let Γ be a fractal structure. We define An(F ) = {A ∈ Γn : A∩F 6= ∅},
as the collection consisting of all the elements in level n of Γ that intersect a given
subset F of X, δ(Γn) = sup{diam (A) : A ∈ Γn}, and δ(F,Γn) = sup{diam (A) :
A ∈ An(F )}, as well.

Definition 3.1 (Fractal dimension models for a fractal structure). Let Γ be a
fractal structure on a metric space (X, ρ), F be a subset of X, and let us assume
that δ(F,Γn)→ 0. Additionally, let us define the following expression:

Hsn,k(F ) = inf

{∑
i∈I

diam (Ai)
s : {Ai : i ∈ I} ∈ An,k(F )

}
,

where

(1) An,3(F ) = {{A : A ∈ Al(F )} : l ≥ n}, if k = 3.

(2) An,4(F ) =
{
{Ai}i∈I : Ai ∈

⋃
l≥n Γl,∀ i ∈ I, F ⊆

⋃
i∈I Ai,Card (I) <∞

}
,

if k = 4. Here, Card (A) refers to the number of elements I contains.
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Moreover, let Hsk(F ) = lim
n→∞

Hsn,k(F ), for k = 3, 4. Then the fractal dimension III

(resp. IV) of F is given as the non-negative real number satisfying the following
equality:

dim k
Γ(F ) = sup{s : Hsk(F ) =∞} = inf{s : Hsk(F ) = 0} : k = 3, 4.

It is worth noting that fractal dimension III always exists, since the sequence
{Hsn,3(F ) : n ∈ N} is monotonic in n ∈ N. Moreover, it has been assumed that
inf ∅ =∞ in Definition 3.1. For instance, if there exists a subset F of X for which
An,4(F ) = ∅, then it holds that dim 4

Γ(F ) =∞.
We would like to point out that the condition δ(F,Γn)→ 0, though necessary in

previous Definition 3.1, is not too restrictive, as the following remark states.

Remark 3.2. Let K be any IFS-attractor. Then it is satisfied that δ(K,Γn) → 0,
since the sequence of diameters {δ(Γn) : n ∈ N} decreases geometrically in the case
of self-similar sets.

On the other hand, the next result provides a handier expression for fractal
dimension III calculation purposes.

Theorem 3.3 (c.f. [8], Theorem 4.7). Let Γ be a fractal structure on a metric
space (X, ρ), F be a subset of X, and let us assume that there exists Hs(F ) =

limn→∞Hsn(F ), where Hsn(F ) =
∑
{diam (A)s : A ∈ An(F )}. Then

dim 3
Γ(F ) = sup{s : Hs(F ) =∞} = inf{s : Hs(F ) = 0}.

The next two results provide connections between fractal dimensions III and IV.

Lemma 3.4 (c.f. [10], Proposition 3.5 (3)). Let Γ be a finite fractal structure on
a metric space (X, ρ), and F be a subset of X. If δ(F,Γn)→ 0, then

dimH(F ) ≤ dim 4
Γ(F ) ≤ dim 3

Γ(F ).

Corollary 3.5. Let F be an IFS whose associated IFS-attractor is K and Γ be the
natural fractal structure on K as a self-similar set. Then

dimH(K) ≤ dim 4
Γ(K) ≤ dim 3

Γ(K).

Proof. It follows as a consequence of both Remark 3.2 and Lemma 3.4, since the
natural fractal structure which any IFS-attractor can be endowed with is finite. �

The main results in this section have been proved in detail for the sake of com-
pleteness. Firstly, we show that fractal dimension III generalizes the classical box
dimension. To deal with, we will prove even a more general result, aimed by the
next Euclidean property: for each δ > 0 and all subset F ⊆ Rd : diam (F ) ≤ δ,
there are at most 3d δ−cubes in Rd that are intersected by F .

Theorem 3.6. Let Γ be a fractal structure on a metric space (X, ρ), and F be a
subset of X. Let us assume that there exist the box dimension of F as well as a
natural number γ such that for all n ∈ N, each subset A ⊆ X : diam (A) ≤ δ(F,Γn)
intersects at most to γ elements in level n of Γ. In addition, if δ(F,Γn) → 0 and
diam (A) = δ(F,Γn), for all A ∈ An(F ), then the fractal dimension III of F equals
the box dimension of F , namely,

dimB(F ) = dim 3
Γ(F ).



FRACTAL DIMENSION FOR IFS-ATTRACTORS REVISITED 7

Proof. First of all, we affirm that

(3.1) dim 3
Γ(F ) = limn→∞

logNn(F )

− log δ(F,Γn)
.

In fact, let β = limn→∞
logNn(F )
− log δ(F,Γn) . By definition of lower limit, there exists a

subsequence{
logNnk

(F )

− log δ(F,Γnk
)

: nk ∈ N
}
⊆
{

logNn(F )

− log δ(F,Γn)
: n ∈ N

}
, such that

β = lim
k→∞

logNnk
(F )

− log δ(F,Γnk
)
.

Let ε > 0 be fixed but arbitrarily chosen. Thus, there exists n1 ∈ N such that

(3.2) δ(F,Γnk
)−(β−ε) ≤ Nnk

(F ) ≤ δ(F,Γnk
)−(β+ε), for all k ≥ n1.

On the other hand, by definition of the set function Hsn,3, it holds that

(3.3) Hsnk,3
(F ) ≤ δ(F,Γm)sNm(F ) ≤ δ(F,Γm)s−(β+ε), for all m ≥ k ≥ n1,

since diam (A) = δ(F,Γn), for all A ∈ An(F ), and also due to Eq. (3.2). If k goes
to ∞ in Eq. (3.3), then

Hs3(F ) = lim
k→∞

Hsnk,3
(F ) ≤ lim

m→∞
δ(F,Γm)s−(β+ε) =

{
∞ if s < β + ε

0 if s > β + ε
,

where the condition δ(F,Γn)→ 0 has been applied to get the last equality. Hence,

(3.4) dim 3
Γ(F ) ≤ limn→∞

logNn(F )

− log δ(F,Γn)
+ ε.

Next, we shall focus on the opposite inequality. To deal with, let δ > 0 be fixed but
arbitrarily chosen. For all k ∈ N, there exists a natural number mk ≥ nk satisfying
the following expression:

(3.5) δ(F,Γmk
)s−(β−ε) ≤ δ(F,Γmk

)sNmk
(F ) ≤ δ +Hsnk,3

(F ),

where Eq. (3.2) has been applied again. Letting k →∞, one gets that

lim
k→∞

δ(F,Γmk
)s−(β−ε) ≤ lim

k→∞
δ(F,Γmk

)sNmk
(F ) ≤ δ +Hs3(F ).

It is worth noting that

lim
k→∞

δ(F,Γmk
)s−(β−ε) =

{
∞ if s < β − ε
0 if s > β − ε

.

Thus, for all s < β − ε, it holds that δ +Hs3(F ) =∞. The arbitrariness of δ leads
to Hs3(F ) =∞, for all s < β − ε. In other words,

(3.6) limn→∞
logNn(F )

− log δ(F,Γn)
− ε ≤ dim 3

Γ(F ).

Therefore, Eq. (3.1) follows from both Eqs. (3.4) and (3.6). To end the proof, let
Nδ(F ) be the smallest number of sets of diameter at most δ that cover F . This
quantity will be applied for box dimension calculation purposes. Since

F ⊆ ∪{A ∈ Γn : A ∩ F 6= ∅},
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then F can be covered by Nn(F ) sets with diameter at most δ(F,Γn), so

dimB(F ) ≤ limn→∞
logNn(F )

− log δ(F,Γn)
.

Additionally, since
Nn(K) ≤ γNδn(F ),

then

limn→∞
logNn(F )

− log δ(F,Γn)
≤ limn→∞

logNδn(F )

− log δn
= dimB(F ).

The existence of the box dimension of F gives the proof. �

The next corollary follows immediately from Theorem 3.6.

Corollary 3.7 (c.f. [8], Theorem 4.15). Let Γ be the natural fractal structure on
the Euclidean space Rd, and F be a subset of Rd. Then

dimB(F ) = dim 3
Γ(F ).

To justify that, just observe that the natural fractal structure on any Euclidean
subspace consists of elements with diameter equal to 2−n (in each level n), and
also that the main hypothesis in Theorem 3.6 is satisfied by such a natural fractal
structure.

Next, we state the main result in this section. It establishes that the Hausdorff
dimension of any compact Euclidean subset could be calculated equivalently via
a fractal dimension model for which finite coverings play a relevant role. Interest-
ingly, such a theoretical result enables the calculation of the Hausdorff dimension in
computational applications [11]. In the upcoming section, it will applied to calcu-
late the fractal dimension of IFS-attractors which are not required to be under the
OSC. In other words, both Theorems 3.6 and 3.8 will lead to generalized versions
of the classical Moran’s Theorem.

Theorem 3.8. Let F be a compact subset of any Euclidean space Rd, and Γ be
the natural fractal structure on Rd. Then the fractal dimension IV of F equals the
Hausdorff dimension of F , namely:

dimH(F ) = dim 4
Γ(F ).

Proof. Firstly, it is clear by definition that An,4(F ) ⊆ Cδ(F ), so dimH(F ) ≤
dim 4

Γ(F ). Accordingly, we will be focused on the opposite inequality. To deal
with, let s ≥ 0 be such that HsH(F ) = 0, and ε > 0 be fixed but arbitrarily chosen.
Then there exists ξ > 0 such that Hsδ(F ) < λ, for all δ < ξ. More specifically, λ

can be chosen to be equal to
ε

3dds/2
. Moreover, let m ∈ N be such that ξ > 2−m.

Thus, it becomes clear, by definition, that Hs2−m(F ) < λ. Hence, for I countable,

there exists a 2−m−covering of F , say D = {Di : i ∈ I}, via open balls on Rd (see
[7, Section 2.4]). The three following hold:

(i) diam (Di) < 2−m, for all i ∈ I.
(ii) F ⊆ ∪{Di : i ∈ I}.

(iii)
∑
{diam (Di)

s : i ∈ I} < λ.

It is also worth mentioning that Eq. (ii) can be rewritten in the following terms,
due to the compactness of F : there exists J ⊆ I, with J being finite, such that
F ⊆ ∪{Dj : j ∈ J}. On the other hand, for all Dj ∈ D, let nj ∈ N be such that

(3.7) 2−nj ≤ diam (Dj) ≤ 21−nj .
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By Eq. (i), it holds that m < nj , for all j ∈ J . Thus, for each level nj of Γ, we
can consider a covering of F via all the elements in that level which meet Dj . In
other words, let Cj = {A ∈ Γnj : A∩Dj 6= ∅}, and let us denote C = ∪{Cj : j ∈ J}.
Further, since diam (Dj) < 21−nj , then there are at most 3d elements in each
covering Cj of Dj . The three following can be stated.

(1) For each A ∈ C, there exists nj ∈ N : m < nj , such that A ∈ Γnj
. This

becomes clear from the definition of each family C.
(2) C is a covering of F . In fact,

F ⊆ ∪{Dj : j ∈ J} ⊆ ∪j∈J ∪ {A : A ∈ Cj}
= ∪{A : A ∈ ∪j∈JCj} = ∪{A : A ∈ C}.

(3)
∑
{diam (A)s : A ∈ C} < ε. To prove that, recall that diam (A) = 2−nj

√
d,

for all A ∈ Γnj . Hence,∑
{diam (A)s : A ∈ C} =

∑
{diam (A)s : A ∈ ∪j∈JCj}

=
∑
j∈J

∑
A∈Cj

diam (A)s =
∑
j∈J

∑
A∈Cj

2−njsds/2

≤ 3dds/2
∑
{diam (Dj)

s : j ∈ J} < ε,

since each covering Cj contains 3d elements at most.

In short, it is satisfied that Hs4(F ) = 0, for all s > dimH(F ). This leads to
dim 4

Γ(F ) ≤ s, for all s > dimH(F ), and hence, the desired inequality yields. �

4. The Theorem

The Moran’s Theorem constitutes one of the milestones in Fractal Geometry. It
was first contributed by P.A.P. Moran (1946), who required the pre-fractals Ki of
an IFS-attractor not to overlap among them, in order to show that the Hausdorff
dimension of the attractor K can be calculated by the unique solution of an equation
involving only the similarity ratios. In other words, the OSC was applied therein
in order to control the overlap of the pieces Ki . However, the result still remains
quite powerful, since without a wide amount of effort, the Hausdorff dimension of
a wide class of self-similar sets follows immediately. For instance, both the box
dimension and the Hausdorff dimension of the standard middle third Cantor set
equals log 2/ log 3, since two similarities can be applied to construct it, each of them
having a similarity ratio of a half. Next, we recall such a classical result.

Moran’s Theorem (1946). Let F be an Euclidean IFS whose associated IFS-
attractor is K. Let ci be the similarity ratio associated with each similarity fi ∈ F ,
and let us assume that F is under the OSC. If s is the solution of the equation∑
i∈I c

s
i = 1, then

dimB(K) = dimH(K) = s, and it also holds that HsH(F ) ∈ (0,∞).

The unique (positive) solution s of the equation
∑
i∈I c

s
i = 1 is usually called

as similarity dimension. Thus, if s is the similarity dimension, then it follows
that HsH(K) ∈ (0,∞). A proof for Moran’s Theorem can be found in Falconer’s
book (see [7, Subsection 9.2]), though the reader may check that the proof for a
lower bound for the Hausdorff dimension, namely, s ≤ dimH(K), becomes quite
awkward. Moreover, whether the OSC is not fulfilled by F , then the calculation
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of the Hausdorff dimension of K becomes harder and only some partial results are
known (see, for instance, [6, 15]). Nevertheless, even in that situation, it holds that
both the box dimension and the Hausdorff dimension of K can be approximated via
fractal dimension III, which still equals the similarity dimension. Next, we provide
the main theoretical result in this paper, which provides a generalized version of
the classical Moran’s Theorem.

Theorem 4.1. Let F be an Euclidean IFS whose associated IFS-attractor is K.
Let us assume that ci is the similarity factor associated with each similarity fi ∈ F ,
and let Γ be the natural fractal structure on K as a self-similar set. If s is the
similarity dimension, then

(1) [c.f. [8], Theorem 4.20] dim 3
Γ(K) = s, and it holds that Hs3(K) ∈ (0,∞).

(2) In addition, if F is under the OSC, then

dimB(K) = dim 3
Γ(K) = dim 4

Γ(K) = dimH(K) = s.

Moreover, for that s, it holds that Hs(K),Hs3(K),Hs4(K) ∈ (0,∞).

Proof. First of all, it becomes clear that the IFS-attractor K is the unique non-
empty compact subset of Rd satisfying the following Hutchinson’s equation:

K =
⋃
{Ki : i ∈ Sn}.

Hence,

(1) Observe that An,3(K) = {Γm : m ≥ n}. Further, let s be a non-negative
real number such that

∑
i∈I c

s
i = 1. In addition to that, it holds that ci is

the similarity factor associated with fi. Thus, it follows that diam (Ki) =
ci diam (K), for all i ∈ I l. It is also worth mentioning that∑

{csi : i ∈ I l} =
∑
i1∈I

csi1 · · ·
∑
il∈I

csil =
∑
i∈Il

csi = 1,

for all i = i1 · · · il ∈ Sl. Accordingly, for all natural number n, the following
calculations hold:

Hsn,3(K) = inf
{∑

diam (A)s : A ∈ Γm,m ≥ n
}

= inf
{∑

diam (Ki)
s : i = i1 . . . im ∈ Im,m ≥ n

}
= inf

{∑
csi diam (K)s : i ∈ Im,m ≥ n

}
.

Thus, since Hs3(K) = diam (K)s /∈ {0,∞}, then dim 3
Γ(K) = s.

(2) Firstly, since the natural fractal structure which any IFS-attractor can be
always equipped with is finite, then it holds that

An,3(K) ⊆ An,4(K),

for all natural number n. Hence, it becomes clear that Hsn,4(K) ≤ Hsn,3(K).
Letting n→∞, it follows that

(4.1) dim 4
Γ(K) ≤ dim 3

Γ(K).

Moreover, since the natural fractal structure for any IFS-attractor also
satisfies that δ(K,Γn)→ 0, then we can state that

(4.2) dimH(K) ≤ dim 4
Γ(K),
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since all the coverings in each family An,4(K) are δ−coverings for appropi-
ately chosen scales δ. Hence, both Eqs. (4.1) and (4.2) lead to

(4.3) dimH(K) ≤ dim 4
Γ(K) ≤ dim 3

Γ(K).

In addition, if F is under the OSC, then the Moran’s Theorem as well as
Theorem (4.1)(1) allows to affirm that s = dim 3

Γ(K), which becomes the
unique solution of the equation

∑
i∈I c

s
i = 1, equals both the box dimension

and the Hausdorff dimension, as well. Hence, the result follows, since the
next chain of inequalities holds:

dimH(K) ≤ dim 4
Γ(K) ≤ dim 3

Γ(K) = dimB(K) = dimH(K).

To conclude this proof, just note that

Hs(K) ≤ Hs4(K) ≤ Hs3(K).

Further, recall that Hs3(K) <∞ by Theorem (4.1)(1), and Hs(K) > 0, due
to Moran’s Theorem. The result follows.

�

We would like also to point out that Theorem 4.1 (1) can be expressed in more
general terms. Indeed, it could be weakened with F being an IFS on a complete
metric space.

It is worth mentioning that Theorem 4.1 becomes quite useful for the explicit
calculation regarding the fractal dimension of a given subset. In this way, the
following example highlights that it is possible to calculate the fractal dimension
III for IFS-attractors whose Hausdorff dimension becomes hard to calculate or to
estimate.

Example 4.2. Let K be the unique IFS-attractor on the closed unit interval [0, 1]
satisfying the next Hutchinson’s equation:

K =
⋃
i∈I
Ki,

where the IFS F which gives rise to K consists of the three following similitudes
fi : [0, 1] −→ [0, 1]:

(4.4) fi(x) =


3
10x if i = 1;
1
10 (1 + 3x) if i = 2;
1
10 (7 + 3x) if i = 3.

It is worth noting that the OSC is not satisfied by F , since the three pre-fractals
Ki of K do overlap among them. Thus, the Moran’s Theorem cannot be applied to
calculate the Hausdorff dimension of K. However, Theorem 4.1 can still be applied
for fractal dimension calculation purposes. In fact, dim 3

Γ(K) yields as the solution

of the equation 3
(

3
10

)s
= 1, namely,

dim 3
Γ(K) =

log 1
3

log 3
10

' 0.912.
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5. Conclusion

In this section, we summarize all the results contributed along this paper and
also state an open question which may lead, interestingly, to a weaker version of
the OSC in terms of irreducible fractal structures.

Theorem 5.1. Let F = {f1, . . . , fk} be an Euclidean IFS whose associated IFS-
attractor is K, Γ be the natural fractal structure on K as a self-similar set, and ci
be the similarity ratio associated with each similarity fi ∈ F . In addition, let us
consider the following statements:

(i) SOSC.
(ii) OSC.

(iii) Hs(K) > 0.

(iv) s is the similarity dimension, namely, P (s) = 0, where P (α) =
∑k
i=1 c

α
i − 1.

(v) dimB(K) = s.
(vi) dimH(K) = s.

(vii) dim 3
Γ(K) = dim 4

Γ(K) = s.

Then the next chain of implications and equivalences yields:

(i)⇔ (ii)⇔ (iii)⇒ (iv)⇔ (v)⇔ (vi)⇔ (vii).

To end the paper, let us be focused on the condition (vii) in previous Theorem
5.1. Let Γ be a covering of X. We say that Γ is irreducible provided that it has
no proper subcoverings (see c.f. [20, Problem 20D]). Thus, a fractal structure Γ is
said to be irreducible provided that all its levels are irreducible coverings.

Lemma 5.2. Let F = {f1, . . . , fk} be an IFS whose associated IFS-attractor is K,
Γ be the natural fractal structure on K as a self-similar set, and s be the similarity
dimension. Moreover, let us assume that Γ is an irreducible fractal structure. Then
dim 3

Γ(K) = dim 4
Γ(K) = s.

Proof. By Corollary 3.5, dim 4
Γ(K) ≤ dim 3

Γ(K) = s, where s is the similarity dimen-
sion. Thus, if dim 4

Γ(K) < s, then Hs4(K) = 0. Moreover, it holds that Hsn,4(K) =

Hs1,4(K), for each n ∈ N, since any element fi(K) ∈ Γk : i ∈ Sk, for some k ∈ N,
could be replaced by {fij(K) : j ∈ S}, where diam (fi(K))s =

∑
j∈S diam (fij(K))s,

as many times as needed. Letting n→∞, 0 = Hs4(K) = Hs1,4(K) yields.

On the other hand, let ε = 1
2

∑
i∈S diam (fi(K))s, and A be a finite covering

of K by elements of
⋃
n∈N Γn, where

∑
A∈A diam (A)s < ε. In addition, let n be

the greatest level containing (at least) one element of A. Thus, for each fi(K) ∈
A ∩ Γm, we can replace fi(K) by {fj(K) : j ∈ Sn, i v j}, where diam (fi(K))s =∑

j∈Sn,ivj diam (fj(K))s, and i v j denotes that i is a prefix of j. Accordingly,

from A we can construct a covering A′ ⊆ Γn, such that
∑
A∈A′ diam (A)s =∑

A∈A diam (A)s < ε. Since Γn is an irreducible covering, then A′ = Γn, but∑
A∈Γn

diam (A)s = 2ε, which becomes a contradiction. �

Open question 5.1. Under the same hypothesis as in Lemma 5.2, and s being the
similarity dimension, is it true, in general, that Γ is an irreducible fractal structure
⇐⇒ dim 3

Γ(K) = dim 4
Γ(K) = s?

In afirmative case, since the OSC implies that dim 3
Γ(K) = dim 4

Γ(K) = s, we
could even provide a weaker (at least at a first glance) version of the OSC via
irreducible fractal structures.
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